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Summary

The possibility of communicating reliably by electromagnetic radiation, with only an

intended party receiving the message, has long challenged engineers to devise techniques,

such as spread spectrum modulation, to combat unintended detection. Coincidently, the

constraints of the electromagnetic spectrum have led to the use of bandwidth and power

efficient modulation szhemes such as continuous phase modulation and multi-h modula-

tion.

The analysis contained herein is the first theoretical and numerical characterization

of the combination of direct sequence spread spectrum techniques with multi-h continu-

ous phase modulation; thereby yielding a new class of signals collectively referred to as

spread spectrum multi-h (SSMH) modulated signals. By applying a pseudorandom di-

rect spreading sequence to a digital information sequence prior to multi-h modulation, a

unique communication scheme is created whereby control over the transmitted spectrum

is afforded so as to have a signal with a low probability of intercept by an unintended

receiver.

In the process of defining and characterizing the signaling structure, it is shown for

the first time that the cyclic modulation indices can be applied on either a chip or on a bit

interval basis with distinct signal structure and performance differences. It is also shown

for the first time that there is a close resemblance between the power spectral densities

of the two techniques. These results provide a unique design flexibility for the system

engineer. -

By spreading a known bandwidth efficient modulation scheme, the power density

spectrum is controlled so that the transmitted spectrum will have a wide flat mainlobe

and rapid sidelobe rolloff. The spectra for SSMH signals are analytically derived using new

applications of autocorrelation and cyclostationary techniques. Numerical analysis reveals

the novel determination that the spectra for both techniques are similar ana resemble the

spread replicas of their parent multi-h schemes.
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Coincident with the spectral control, the power efficient modulation allows transmis-

sion at lower signal-to-noise ratios when the receiver knows a priori the spreading sequence

and the modulation index sequence. Optimal coherent receiver structures are analytically

derived and upper bounds to the bit error rate performance are determined. Analysis

reveals the new and significant result that performance is dependent on the spreading

sequence and on the allowable phase states. It is shown that the Viterbi Algorithm can be

successfully used to sequentially detect information sequences based on bit metrics derived

from the sum of individual chip metrics.

The optimal receiver structure is numerically evaluated in an additive white Gaus-

sian noise environment. For the first time for this type of signal, realistic evaluation is

performed by adding correlated noise samples to the outputs of noise free correlation filter

detectors. It is shown that the receiver performance is dependent on the selected modu-

lation indices and on the spreading rate; and can exceed Direct Sequence Binary Phase

Shift Keying by one to two decibels at bit error rates of 10-5.

The performance of the modulation scheme as a low probability of intercept technique

is investigated from a detectability standpo;-it. Composite likelihood ratio analysis reveals

a novel reduction by 50-70 percent in the detectability of a completely known (except

information and spreading sequences) SSMH signal as compared to DS/BPSK signals at

bit error rates of 10- 4.

Tentative conclusions from this study indicate that spread spectrum multi-h mod-

ulation is a viable technique for low probability of intercept applications. New methods

for the application of continuous phase modulation indices have been derived and the

impact of the spreading sequence on performance has been revealed. Realistic numeri-

cal evaluations with correlated noise samples indicate enhanced performance and reduced

probability of detection when compared to DS/BPSK. Spectral control is obtained along

with power efficiency to allow detection at lower signal-to-no:se ratios.



CHAPTER 1

Introduction

The possibility of transferring information, that is, communicating, from one loca-

tion, or person, to another with only the intended party receiving the message, hcs lung

intrigued and challenged engineers and military commanders alike. At the beginning of

this century when radio transmissions were first making an appearance, an anonymous

observer noted [29], '...the homing-pigeon service should be discontinued as soon as some

system of wireless telegraphy is adopted.' Today, the insecurity and unreliability of the

pigeon service no longer exists; instead engineers continue to grapple with the challenges

of providing reliable and secure wireless systems.

The rapidly increasing demand for utilization of the frequency spectrum has led to

expanded research in efficient methods of transmission to enhance the transfer of digital

information. This is especially true on nonlinear links where constant envelope signals

are affected the least by nonlinearities in the transmission process. This has led to exten-

sive research and development of bandwidth efficient techniques such as continuous phase

modulation (CPM), where the information is carried in the instantaneous carrier phase

or frequency, while the envelope of the signal remains constant. Multi-h modulation is a

form of constant envelope CPM that is both power and bandwidth efficient.

Coincident with the development of CPM, extensive development has taken place in

communications techniques that are immune to intercept and jamming. Spread spectrum

techniques such as direct sequence (DS) pseudorandom spreading have been used to create

signaling methods that are much more difficult to intercept by an unintended receiver, or

in other words, have a low probability of intercept (LPI).

By applying direct sequence spreading to a digital information sequence, and utilizing
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bandwidth and power efficient multi-h modulation, the work herein is an attempt to create

a signaling technique that is immune to interception. This effort is a novel attempt to

extend spread spectrum techniques to this bandwidth efficient modulation method.

By spreading a known bandwidth efficient modulation technique, a signal structure

is created that should have a power density with a wide flat mainlobe and rapid sidelobe

rolloff. At low signal-to-noise ratios, this spectrum will be difficult to detect, observe, and

parameterize. Analytical expressions for the power spectral density of spread spectrum

multi-h signals with various parameters are derived and numerically simulated.

Coherent receiver structures to detect the transmitted information sequence will be

derived, where it is assumed that the intended receiver knows the spreading sequence, the

modulation index sequence, the carrier phase, and the symbol and chip timing. Perfor-

mance analysis and simulation will be accomplished to verify the structure.

The issue of the detectability of the transmitted signal will also be addressed from

an optimal intercept standpoint. Analysis will consider the best possible performance of

an intercept receiver that knows all of the characteristics of the transmitted signal except

the information sequence and the spreading sequence.

The current work is organized as follows. A historical perspective on which this

research is founded will be followed in Chapter 3 by a succinct definition of the signals

known collectively as spread spectrum multi-h (SSMH) modulation along with some of

their characteristics. Using the signal definition, a potential transmitter implementation

follows in Chapter 4. The spectral characteristics of the transmitted signals are of vital

importance in an LPI environment, hence the power spectral densities of these signals will

be analytically derived and simulated in Chapter 5. Then receiver structures associated

with the coherent reception of SSMH signals will be analytically derived in Chapter 6. The

performance of these optimal receivers in an additive white Gaussian noise environment

is then upper bounded in Chapter 7 and the system numerically simulated in Chapter 8.

In Chapter 9, the detectability of these signals by an uninte-aded receiver that has all the

optimal information about the signal will be addressed. Lastly, Chapter 10 will summarize

the results and conclusions of this work.
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CHAPTER 2

Historical Perspective

The spectra of signals modulated by random or pseudorandom sequences was first investi-

gated in 1961 by Titsworth and Welchj63). They specifically considered discrete signaling

and sinusoidal modulation. In 1963, Bennett and Rice concentrated on binary frequency

shift keying techniques[17], and considered the spectral density and autocorrelation func-

tions of sinusoidal segments leading to continuous and discontinuous phase/frequency shift

keying. Their work was further amplified and optimum coherent reception of binary fre-

quency shift keying (FSK) derived by deBuda[21, who showed that for low deviation

ratios (h = 1/2), the radio frequency bandwidth of digital FM signals was smaller and

performance better than conventional FSK.

In early 1974, Cahn extended the earlier work of Viterbi[68] and Forney[25] to show

that digital sequences modulating either FSK or phase shift keying signals could be se-

quentially and maximum likelihood detected using the Viterbi Algorithm with an inherent

detection delay[201. Later in that year, Ungerboeck extended the approach to show that

the Viterbi Algorithm could also be used to perform carrier phase tracking as well as

detection by expanding the state definition[65i.

Concurrently, Osborne and Luntz published a paper of major significance that derived

the optimum maximum likelihood receivers for CPFSK under coherent and noncoherent

conditions[45l. Additionally, high and low signal-to-noise ratio approximations were con-

sidered. Among their conclusions was the fact that noncoherent reception could perform

as well as coherent detection.

In the same year, Bernstein extended the work of Urkowitz[66 on energy detection of

deterministic signals, to derive the optimum energy detectors of pseudonoise waveforms[18]
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for phase modulated signals. The work of Baker in October of 1974 to define the asymp-

totic behavior of digital FM spectra helped further define the low SNR properties of FM

signals[16].

The power spectrum of digital continuous phase shift keying and frequency shift

keying was considered later in 1975 by Rowe and Prabhu[53], who showed the time average

autocorrelation method of spectral analysis of FSK including partial response signaling.

Additionally, they derived conditions for the existence of discrete lines in the spectrum.

Multi-h modulation was introduced in 1975 in a landmark paper by Miyakawa421,

who extended the continuous phase FSK techniques of deBuda by cyclically changing the

modulation index to create 'm'ilti-mode' binary CPFSK. By changing the modulation

index from interval to interval, the distance characteristics of the continuous phase fre-

quency shift keying signaling increased; the result was enhanced performance while at the

same time maintaining bandwidth efficiency with the continuous phase property. He thus

introduced a bandwidth efficient constant envelope signaling scheme.

At the same time, Garrison showed that the power spectra of digital FM could be

calculated by making linear approximations to the input waveforms[26].

Continuous phase systems moved to the hardware implementation stage in 1976

when deBuda showed simple implementation of his Fast FSK system [22]. Additionally,

Schonhoff extended the work of Osborne and Luntz to show that their results held for M-

ary signaling as well as binary signaling, that M-ary systems outperformed binary schemes,

and continuous phase systems outperformed conventional PSK systems[57.

Late in 1976, Anderson and deBuda showed that continuous phase or frequency

shift keying systems displayed a trellis structure and could be detected using the Viterbi

Algorithr2]. In addition, if the modulation indices of Miyakawa's multi-mode (now multi-

h) CPFSK were the ratio of small integers, then the CPFSK signals also had a trellis

structure, which implied that they could be detected with the Viterbi Algorithm. In 1977,

Anderson and Taylor exposed the characteristics of multi-h signals by showing their spec-

tral characteristics and showing that enhanced performance was obtained by the increased

signal distance characteristics[5].

Coincident with the growth of multi-h modulation was the maturation of spread spec-

trum techniques, which resulted from the desire to have anti-jam and anti-intercept com-
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munications. An excellent review of the origins of spread spectrum systems was provided

in the text by Simon, Omura, Scholtz, and Levitt, Spread Spectrum Communications591.

In 1978, significant extension of multi-h system theory was done by Anderson, Taylor,

and Lereim[4,3]. Anderson and Taylor expanded their previous work to examine and

report in a landmark paper[4] the signaling properties, distance properties, and detection

performance by sequence estimation of multi-h phase coding. Additionally, they included

the spectral density findings of Lereim from his independent research[3,331. Thcir results

confirmed that multi-h was indeed a bandwidth and power efficient modulation technique.

In 1979, Aulin, Rydbeck, and Sundberg used their previous work in partial response

signaling, M-ary CPFSK, and pulse shaping in conjunction with multi-h signaling to pro-

duce a combined modulation and coding scheme that provided power/bandwidth perfor-

mance that exceeded conventional rectangular signaling multi-h modulation[8].

In the early 1980's, multi-h modulation reached a level of acceptance such that various

attempts were made to begin implementation. Using the earlier work of Scharft56, Wilson

and Hsu devised a maximum a posteriori (MAP) sequence/phase estimator that utilized

an expanded state vector and the Viterbi Algorithm to jointly estimate the data and

phase of trellis coded systems[74,301. Shortly thereafter (1981), Mazur and Taylor used a

decision directed phase lock loop to establish synchronization and the Viterbi Algorithm

to decode multi-h phase coded signals[40j.

Coincidently, Wilson and Gaus extended the earlier efforts of Lereim and generalized

the power spectral calculations of multi-h phase codes to include M-ary signals, pulse

shaping, and arbitrary h codes[72]. Their landmark paper investigated simulation, Markov

chain, direct, and autocorrelation methods of spectral calculations as well as deriving the

conditions for discrete spectral lines and spectral approximation methods.

In May of 1981, Anderson simulated the performance of multi-h coded signals[l].

In the process of simulating additive white Gaussian noise channels, he devised a signal

space receiver and confirmed that multi-h was an attractive modulation technique for

bandlimited channels. Simultaneously, Aulin and Sundberg were consolidating the work

of Anderson, Baker, and Garrison to show numerical calculation methods for the spectra

of multi-h signals[14]. The following year they refined the autocorrelation method to

generalize a direct numerical calculation method for the spectrum[9]. Later in the year,



they also used Baker's asymptotic approximations to estimate the tails of the spectral21.

At the same time, they performed extensive analysis on the distance properties of multi-

h signals including bounding the Euclidean distance and confirming that M-ary signals

outperformed binary signalsJ151. They also concluded that quarternary, two h, systems

performed the best[131.

During the same time frame, considerable work was performed in spread spectrum

systems and the detection of digital signals. Pickholtz, Schilling, and Milstein summarized

the state of spread spectrum in May of 1982 in a landmark paper[47] that complemented

the theoretical work of Holmes[28] and Dixon124]. Much of the work in spread spectrum

cor,centrated on its low probability of intercept characteristics, which Krasner approached

from the opposite view. He based his efforts on the earlier work of Dillard[23] on detectabil-

ity and formulated the optimum receiver structures for digitally modulated signals when

the data sequence was unknown,321. His results followed closely the optimal receivers of

Osborne and Luntz.

During mid 1982, Wilson, Highfill, and Hsu used the method of a difference state

space to develop upper and lower bounds on the performance of multi-h coding systems 731 .

At the same time, Simmons and Wittke attempted to reduce the complexity of Viterbi

Algorithm sequence detectors by using a reduced state space of received signals[581.

The following year saw increased efforts to perfect the implementation of multi-

h receivers. Wickert and Ziemer considered the practical aspects of bandlimiting and

amplitude-limiting of multi-h signals[70,71]. Additionally, they considered phase and tim-

ing errors, and found that there was minimal degradation in performance as a result of

these factors.

Aulin and Sundberg also published a paper of major impact which summarized their

earlier work on a general numerical method of calculation of the power spectrum of CPM

signals[Ill. Subsequent work by Maseng used the ch.aracteristic function of the phase

change variable to calculate the autocorrelation function[38] and power spectrum[39 of

multi-h signals.

The year 1984 saw increased research and consideration of LPI signaling and signal

detectiun. Detector structures for the reception of spread spectrum signals was the ob-

jective of an in depth study by Axiomatix Corporation481. The study concluded that
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the radiometer energy detection of Dillard and Urkowitz may well be the best practi-

cal approach to detection of direct sequence spread spectrum systems. Subsequently,

Torrieri addressed the transmission of LPI signals as well as their detection with simi-

lar conclusions[64]. Simon, Omura, Scholtz, and Levitt also addressed the issue in their

definitive text on spread spectrum communications[591. Meanwhile, Ziemer and Peterson

were investigating the attributes of combining spread spectrum techniques with bandwidth

efficient modulations[77]. In particular, they showed the extension and ease of implemen-

tation of spread spectrum minimum shift keying signaling.

At the same time, Anderson, Aulin, and Sundberg had consolidated their earlier

research and produced a preeminent compendium entitled Digital Phase Modulation!6].

More recently, Ho and McLane used the autocorrelation method along with the

Markov state characteristics of CPM signals to derive a recursive algorithm for the calcu-

lation of the power spectra of CPM signals with correlated input data symbols!27 .

Receiver structures for multi-h signals have also been maturing with the efforts of

Liebetreu and Wickert35,34. Using the work of Scharf[56], Cahn[20, and Viterbi!68:,

Liebetreu developed a dynamic programing algorithm (i.e., Viterbi Algorithm) with ex-

panded states to jointly estimate the data and phase state of multi-h signalsf34. In 1986,

he showed a simplification process of state reduction to reduce receiver complexity and

computation time. Subsequently, both authors simulated the receiver performance and

included practical aspects such as bandlimiting, timing errors, and decision depth[351.

Most recently, Premji and Taylor suggested alternate receiver structures that em-

ployed matched filters to perform maximum likelihood sequence estimation and jointly

determine the carrier phase and symbol timing[51]. Additionally, Premji has shown the

practical aspects of their receiver by using only an average h value to reduce the state and

matched filter structure and included synchronization effects with the result of minimum

degradation in performance[50].

The concept of combining spread spectrum techniques with bandwidth efficient mod-

ulation schemes was initially considered by Sadr and Omura in January, 1988 [55] following

their research efforts in 1983 [54]. They concluded that direct sequence spreading of a dig-

ital source prior to nfinimum shift keying modulation produced a signaling structure that

was optimally detected using the Viterbi Algorithm with joint phase and data detection



from an expanded signal state vector.

The present work will extend this historical foundation by combining the power

and bandwidth efficient characteristics of multi-h modulation with the low probability of

intercept attributes of spread spectrum techniques.
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CHAPTER 3

Signal Description

This chapter defines the signals that will be collectively referred to as spread spectrum

multi-h signals. Some of the resulting properties and characteristics are discussed along

with some of the limitations and assumptions used in this presentation.

3.1 Signal Definition

Spread spectrum multi-h (SSMH) modulated signals are defined by a transmitted signal

s(t, ,h) = F'7E- cos(2r fot + 4(t,a, c,h) + G0), (3.1)

where the information symbol, aj, is multiplied by a random/pseudorandom spreading

sequence of ci dibits, or chips, and modulated in the phase

t oo N,-1

€(t,Qc,) 72 r f E Y ih(i+j)modHcig(r-(j+iN)T)dr; -oo < t < o. (3.2)
-0i=-00 j=O

The data sequence, a, is an M-ary (M is a power of 2) infinitely long sequence of

uncorrelated equally likely data symbols; each with a value of a, = ±1, ±3,... , ±(A - 1),

with i = 0,±1,±2,..., and symbol duration T,. The carrier frequency is f and 0o is an

arbitrary constant initial phase which will be set to zero under the assumption of perfect

coherency.

The spreading sequence, c, is assumed to be an infinitely long sequence of uncorrelated

equally likely chips, each with a value of c, = ±1. This sequence is presumed known a

priori by both the transmitter and the receiver. Practical implementations require that

this sequence become finite (implying correlated) with implementation via an m-sequence
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generator for example. The present work will assume an infinitely long and uncorrelated

sequence. Additionally, it will be assumed that there are an integer number of chips, N',

per symbol interval such that T, = NT,.

The modulation index, h, is a finite length sequence of cyclically varying fixed fre-

quency deviations, such that

hj+j = hi±++1 = n1 /p, or, (3.3)

hi+i = h(i+,)modH. (3.4)

The numerators, ni, and denominator, p, are fixed integer numbers. As a result, a finite

state description for the signal structure can be made and can be reflected in finite state

trellis structures.

While the number of frequency deviations is finite and fixed for a given modulation

system, the number of deviations in the sequence can be variable and influences the re-

sulting system performance. In general, it has been shown that up to a point, multi-h

systems with longer h sequences perform better than systems with shorter h codes [15].

The present work considers only systems with two modulation indices for simplicity. An

obvious extension is to systems with longer frequency deviation codes.

The phase transitions in the signal definition to this point have been indexed on a

bit basis for the information sequence and on a chip basis for the chip sequence. The

application of the frequency deviation ratio, h(i+imodH, on a chip basis will be referred

to as conventional spread spectrum multi-h modulation. This leads to the expression of

the phase of the transmitted signal as

cc Nc -

¢(t,ar,_) = 27r E E] aicjh(+j)modHq(t - (j + iN )T ), (3.5)
i=-oo j=O

where q(t) is the chip phase transition resulting from the frequency pulse shaping function

g(t).

At the same time, it should be noticed that the frequency deviation can be applied

on a bit basis resulting in the ratio being indexed along with the bit sequence, i.e., hi. This

type of application will be referred to as modified spread spectrum multi-h modulation.
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In this situation, the phase is expressed as

" Nc-
1

0(t, c,2c,rh) = 27 E 1 acjh,modHq(t - (j+ iNe)Tc). (3.6)
i=-oc j=O

The frequency smoothing pulse, g(t), acts on the product of the chip and the data

symbol to define the shape of the phase response, q(t) = f t. g(r)dr. Generally, g(t) is a

causal smoothing pulse of arbitrary form and length LT¢, where L is a positive integer.

When L is greater than one, partial response signaling results. The pulse is normalized

so that q(LT,) = 1/2. For this work, it will be assumed that g(t) is constant over a chip

interval so that
g(t) o < t < T(37)

0 otherwise,

which results in a constant slope phase change over a chip interval as shown in Figure 3.1.

g(t) q(t)

2T, 2/

I 1I

0 T, 2 T, 3T, 0 T, 2T, 3T1t

Figure 3.1: Chip Pulse Shaping Forms

With the smoothing pulse, g(t), acting on each chip and data symbol, the character-

istics of continuous phase systems are preserved by requiring that the phase transitions at

chip intervals be a continuous function of time.

Following the lead of Anderson and others6], the phase change during the 1-th bit

and n-th chip, can be expressed (assuming rectangular pulse shaping and fixed rational

modulation indices) as

O(t,g, ch) = 2 1rh(1+n)modHatCLnq(t) + Oln = #(t,Q1,C1n,h(+n)modH) + 81n, (3.8)



12

where I n-1

,= [n h(,+j)modHCatciII mod 2,r. (3.9)
i=-o 0=0

As shown in Digital Phase Modulationl6), this expression describes a Markov state system

with p states. As a result, the signaling waveform will exhibit a periodic trellis structure.

However, the inclusion of the cyclically changing modulation indices will alter the period-

icity of the trellis as compared to fixed deviation continuous phase systems. Additionally,

if m-sequences are used for the spreading code, an additional level (extremely long) of

periodicity is introduced. The essence of the trellis structure remains the fixed repetitive

Markov state structure. As mentioned above, simple examples of spread multi-h trellis

structures are shown in Figures 3.2 and 3.3 below. The diagrams illustrate the possible

phase transitions according to the cjj's if viewed as if the information bit is a constant

+1. Alternatively, if all of the dibits are +1, then the phase changes according to the

information bits are shown.

-7, t

I 
-J 2T 

S

Figure 3.2: Conventional SSMH Trellis Structure; h - 4 4

It is appropriate at this point to reiterate some of the characteristics of the SSMH

trellis structure. For conventional spread spectrum multi-h, the essence of multi-h signal-

ing remains and the corresponding distinguishing features of the trellis remain intact; but
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*,l. . . .Y , ..

//Y\*tI/ " ! /,- -I 7 *

! ,., . .. I:
,\ , .\', I, .- '/ ', ,

0 '. 2. 'S T.

* I-w2-4

Figure 3.3: Modified SSMH Trellis Structure; h 2 4

the specific characteristics must be amended to account for the spreading sequence. As

a result, the characteristics as delineated by Anderson and Taylor (4] must be refined to

include the following,

o The minimum value of the binary unmerged interval is C = H only if p 2H", and

no subsets of {h 1i} have an integer sum over N, chips.

* The period of the trellis remains Tp = HT, if EH n is even; and the period of the

trellis is Tp = 2HT if E=I n is odd.

* The number of phase states is p if the summation of the n, is even; or the number

of states is 2p if the summation of the n, is odd, where n, are the numerators of the

modulation indices.

When modified spread spectrum modulation is used, the characteristics change slightly

and are,

* The minimum value of the binary unmerged interval is C = H only if p > 2 H, and

no subsets of {h,,} have an integer sum over N, chips.
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" The period of the trellis is Tp "- HNTC if EIf=I n, is even; and the period of the

trellis is Tp = 2HNC if Eifi nj is odd.

" The number of phase states is p if the summation of the ni is even; or the number

of states is 2p if the summation of the ni is odd, where ni are the numerators of the

modulation indices.

3.2 Assumptions

Prior to embarking on the analysis of SSMH systems, it is appropriate to first re-

count the assumptions that limit and define the scope of the modulation schemes to be

considered.

These assumptions are as follows.

* Independent binary information sequence.

* Independent infinite length spreading code sequence.

e Perfect bit and chip synchronization and timing.

e Perfect coherent carrier phase reference.

* Integer number of chips per bit.

e Independent two index frequency deviation code.

* No filtering effects.

* Full response rectangular pulse shaping.

* Equal energy per chip.
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CHAPTER 4

Transmitter Implementation

The concept of spread spectrum multi-h signaling, as stated previously, is to apply direct

sequence spreading to a digital information sequence prior to multi-h modulation. The

conceptual structure of the SSMH transmitter is shown in Figure 4.1. The binary (±I)

information bit is multiplied by a much higher rate dibit (value of ±1) to yield a digital

binary input sequence that is input to a conventional multi-h modulator.

Modulation

h f

Figure 4.1: Spread Spectrum Multi-h Transmitter

Using equations 3.1, 3.2, 3.5, and 3.6 as the definition of the desired transmitted

signal, the transmitter structure can be further defined following trigonometric expan-

sion and substitution. With the initial arbitrary phase set to zero and rectangular pulse

shaping, the signal definition for the interval, jT, < t < (J + 1)To, may be expressed as

s(t,c, c,h) = IE(t) cos wot - Q(t) sin wot], (4.1)VT

where the inphase term is

I(t) = [cos(27rh(,+,)modHCaicijq(t))] cos Oi - (4.2)

[sin(2?rh(i+j).odHaicijq(t))] sin Oij,
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and the quadrature term is

Q(t) = [sin(21rh(i+jmodHlcijq(t))J cos ij + (4.3)

[cos(27rh(i+j)rodHa, c,jq(t))I sin Oj.

These equations form the basis of the quadrature transmitter structure ol Figure 4.2

shown below.

------ 0. cij q(t) 2 rh(i+j)modH COS 0ij

i -s innw0 , t t , t  c , _h )

cij q (t) 2
7rh(i+j)tnodH COS iL

sinioo

Figure 4.2: Quadrature Transmitter Structure

Since the phase states, Oif, are fixed for rational modulation indices, and result from

the previously discussed Markov description of the signaling waveform, it is apparent that

the modulation process could be implemented in a recursive 'lookup table' fashion. Based

on the current input data bit and the phase state after the last bit, a new transmitted

waveform can be easily implemented in quadrature form prior to modulation by the carrier

frequency.

Implementation of a similar form of a CPM transmitter using a read only memory

(ROM) based signal generator has been shown by Anderson and others[6].

While not the subject of this work, it should be mentioned at this point that the

dibits would be generated from pseudorandom generators of any appropriate type. It
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is assumed here that the pseudorandom generation is such that the period is extremely

long; in effect yielding a dibit sequence for which the individual chips can be considered

to be independently generated plus or minus one. From the transmitter implementation

standpoint, the pseudorandom generator is simply an independent component.

This same characteristic holds for the pulse shaping function. As previously delin-

eated, this function may take on many forms with rectangular pulse shaping being the

simplest case. Once again, from the transmitter implementation standpoint, it is a simple

process to generate different pulse shaping functions, which will have a marked effect on

the transmitted signal.

Finally, the ease with which it is possible to change the fundamental nature of the

transmitted signal is shown in the ease with which the frequency deviation ratio sequence

can be changed. It is obvious that the magnitude of these ratios can be readily changed. It

should also be apparent that the method in which this frequency deviation is applied can be

changed. In one case, the index can change during each chip interval; thereby resulting in

conventional SSMH. On the other hand, it would be a simple matter to clock the sequence

in accordance with the incoming data bit sequence and thereby produce modified SSMH,

where the modulation indices change cyclically on a bit basis. Subsequent chapters will

address the attributes of the signals produced by either of these methods.
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CHAPTER 5

Spectral Analysis

One major purpose of spread spectrum multi-h modulation is to create a signal waveform

that presents a power density spectrum that has a wide flat mainlobe and rapid sidelobe

rolloff. If transmitted at low signal-to-noise ratios, the broad flat spectrum becomes diffi-

cult to detect, observe, and characterize by unintended receivers. At the same time, finding

analytical expressions and numerical results for digital FM signals has been referred to

as 'analytically perverse' [261, due to the mathematical complexity and in general lack of

closed form solutions. This results from the nonstationarity of random input waveforms,

wh'ch means that direct autocorrelation methods do not apply[6]. However, average power

spectra can be calculated. This chapter addresses the problem of analytically describing

SSMH signal power density spectra.

Initially, the spectra for both conventional and modified SSMH are derived and it

is shown that the spectra have the same characteristics as the original unspread multi-h

signals when normalized to the chip rate. It is also shown that from a spectral analysis

standpoint, conventional and modified SSMH signals have the same spectral characteristics

for consistent modulation indices. On the other hand, selection of the indices determines

uniquely different spectra. As a result, control over the transmitted spectra can be ob-

tained so that the resultant transmitted spectra may have the desired LPI characteristics.

Following a brief summary of the methods available for spectral analysis, the spectra

for conventional SSMH signals are derived in Section 5.2, and the spectra for modified

SSMH signals are derived in Section 5.4. Section 5.6 addresses common characteristics

of the spectra, and finally the detectability of SSMH signal spectra will be addressed in

Section 5.7.
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5.1 Methods of Spectral Analysis

Various approaches to analytically deriving and describing the power density spectrum of

phase/frequency modulated signals have been presented. These approaches generally fall

into four categories,

1. Simulation[72],

2. Direct approach[17,63,721,

3. Markov chain approach[53,33], and

4. Autocorrelation approach [17,9,11,141.

The simulation method is straightforward application of the discrete Fourier trans-

form. The complex envelope, e"(t4), is sampled and the spectrum estimated byrt72]

S(f) = XN(f) 12, where XN(f) = I: e)o(tl)e - j 2 /tk. (5.1)

While uncomplicated, this approach may not give accurate results due to bias effects[72].

The direct approach is to take the Fourier transform of the autocorrelation of a

deterministic signal, then average over the input sequence and the random phase. The

spectrum can be expressed as[6]

S(f) = lim 1C{I SNf,2) 2Y (5.2)

In the case of multi-h signals, the period, T, is extended to HT to account for the vari-

ation in h[72). This method generally leads to complicated integrals, sometimes in two

dimensions.

The Markov approach utilizes the Markov state description from the trellis diagram

and computes the lowpass spectra for each state transition[72. Hence, the spectrum is

described via
S(f) = N 00 -2,erfnTP7ks(f)Sk(f), (5.3)

Tj= k=1 n--ooN

where Pk is the jk-element of the transition matrix, and Sj and Sk are the Fourier

transforms okT the lowpass complex envelopes of the jth and kth state waveforms[72].

Once again, the methodology is rather complicated.
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Finally, the autocorrelation method for general CPM w,.s derived by Anderson and

others[6]. The procedure involves taking the product of s(t,2) and s(t + r,a), averaging

over the input data sequence, time averaging the product over T, then Fourier transform-

ing to obtain the average spectrum[6,14,9,11]. This general method has been applied to

multi-h signaling schemes by Anderson and others[6] by extending the time averaging over

an interval HT,. This is the approach taken in the current work.

The result is that the spectrum will be calculated from the expression

S(f) = 2R R(r)e-j 2
rfrdr, (5.4)

where R is the real part, and

R(r) J0 ' Tt+ h)e-Y(ta2ch) dt. (5.5)

Using these expressions, the analytical power density spectra for various parameter

spread spectrum multi-h signals will be derived. The first objective of the work will be

accomplished with broad flat spectra with rapid sidelobe rolloff.

Applying this methodology to the current work requires two considerations. First,

the random direct sequence of infinite duration can be handled by averaging over the

sequence (equally probable ±1) assuming independent and ident,'y d_..J.... 'ips.

Secondly, because the sequentially generated spreading code is considered to have an

independent distribution, no consideration is given to the fact that in reality this sequence

must be generated by a device that will have a fixed, but hopefully very long, period. This

periodicity will introduce correlation in the spreading sequence that will not be considered.

The effect of the changing modulation index is to smooth the spectral density curves,

which implies that better results may be obtained by applying the modulation index on

a chip interval basis rather than on a bit interval basis. This issue will be addressed by

analytically deriving the spectra for both modulation schemes and it is shown that the

resulting spectra have essentially the same characteristics for a given modulation index

code.

The general method of analysis then for the power spectral density is to obtain the

autocorrelation of the signal expression, invoke the time averaged autocorrelation approach

of Papoulis [46], and implement the Wiener-Khintchine Theorem to Fourier transform the
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time averaged autocorrelation to obtain a 'probabilistic representation' [33] of the power

spectral density.

The derivation begins by recalling that s(t) can be represented in complex form by

E~s(t) = 2{u(t)} --,E cos(21rfot + 0(t) + 0o), (5.6)

where

u(t) = 2E (2.ft+,E(t/+o)} - ,E j(21rfot+o)eJO(t) (5.7)

The autocorrelation function then can be expressed as

R(t1 ,t 2) = e{s(tI)s(t 2 )}, (5.8)

where e {-} represents the ensemble average. Using the fact that 00 is randomly distributed

on 27r, and e{R(u(t))} = e{Z((u(t))}, and following the procedure shown by Lereim [33],

the autocorrelation function reduces to

R(tEt 2) = E cos(2,rfo(ti - t2 ))E{d(O('t)--02))}. (5.9)

Since this autocorrelation function is dependent on ti and is therefore not stationary,

the power density spectrum and the autocorrelation do not form a Fourier transform

pair. However, as shown by Papoulis [46 and Lereim [33], if 0(t) is a periodic function,

a cyclostationary process results and the power density spectrum will form a Fourier

transform pair with the 'time averaged' autocorrelation function.

Thus

R(r) =< fcos(2,r or) e WWO -0(9+,))} >,

and by the Wiener-Khintchine Theorem
S(f) = 7{R(r)} = 1- G(f)* {I (f- f 1)+ 18(f+ f0)}, (5.11)

where G(f) is the spectrum of the lowpass process (¢()-(t+t)), * indicates the convolu-

tion process, and 6 is the Kronecker delta function. Therefore,

G(f) = - (5.12)

Since the spectrum of the lowpass process characterizes the spectrum of the entire

process, the remainder of this discussion will concentrate on the derivation of the lowpass

spectra. Additionally, the application of the modulation indices now becomes a factor and

the lowpass spectra for each type of SSMH signal must be derived separately.
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5.2 Conventional Spread Spectrum Multi-h Spectra

From Chapter 3, the information carrying phase of the lowpass process is expressed as

oo N,-1

0(t) = 2,r E acih(,+)modHq(t - (j+ iN)T ). (5.13)
i=-00 j=0

By expanding the series and regrouping terms, the lowpass autocorrelation function

can be expressed as

e.: e2,N=. '- Ic-mhm* ~ oHq -(n+mNc)rc)-q~t2-{n+mNc)T,))).

(5.14)

The summations in the exponentials become products of exponentials and this expression

reduces to

00 N -i
r(t14t2) := 11 rl e.,c eJ21r'cc-hln+m)modH~q(il-(n+mN,)Tc)-q(t2-(n+mNc)T )1}" (5.15)

m=-oo n=O

Since the information sequence is assumed independent and identically distributed,

as well as the chip sequence being independent and identically distributed, the joint dis-

tribution for the product of a and c is f,,, = 6(ac + 1) + 5(ac - 1). Therefore,

00 Nc -

r(tl,t2) = 1 ]1 cos[27rh(n+m)modH(q(tl-(n+rnNc)T,)-q(t2 -(n+mNc)Tc))) (5.16)
M=-oo n=0

The modulation indices applied on a chip basis are from a finite set of H values and

applied cyclically. As a result, after expanding the products, the above equation becomes

a periodic product over HT, and by Papoulis [46] yields a cyclostationary process. Then

the time averaged autocorrelation becomes

r(r) HT= -T cos[27rhnmodH(q(t -- nTe) - q(t + r - nTc))]dt. (5.17)
HT, f -- oo

At this point, it is important to realize that g(t) = 0, for t < 0 and q(T,) = 1/2.

The result (as shown by Anderson [6) and Aulin f111) is that the infinite product in

equation 5.17 becomes a finite product. Then

r~~ 1 HfTt H(k+i)+i

r-(r) I f 1"I cos[21rhnmodHj(q(t +-nTC) -q(t -nT))Idt k=0,1,2,...
n.1

(5.18)
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and for r f + kHT, >_ HT, where 0 < i < HT ,

r(r) =r(i+kHTo) k= 1,2,3,... (5.19)

Considering k > 1 and following the procedure shown by Anderson to expand the

product [6], the autocorrelation becomes

r(r) C,- 1 '(i), k= 1,2,... (5.20)
H-1

11 cos(irhimodH), (5.21)
j=0

1 HT H-1 1
HT,(f) -o j cos[27hjmo.dH( - q(t - jT)

H-t I

X fi CoS[27rh(jkH)rn-dH(q(t + " - jT,)]dt, (5.22)
j=0

which indicates that the autocorrelation function can be expressed as a single integral

term and a geometrically decaying multiplicative constant.

With this expression for the autocorrelation function, the lowpass power spectral

density of the real signals can be obtained by using the Fourier transform as shown in

equation 5.4. Again, following the procedure described by Anderson [6], after subdividing

the interval of integration in the transform, expressing the integral from HT, to infinity

as an infinite summation, and noting that the infinite sum is convergent, then the lowpass

spectrum can be expressed as

G(f) =2R{HT, r(r)eiwfdr + e - r(r + HT)e-' 2rYfdr}. (5.23)G~)= R rre-fofd 1 - Cce - j 2xr f n T ,

After normalization by the chip duration, T,; that is, fT= f, this expression for

the lowpass spectrum reduces to

G(ff) = 2eR~ H - J1'r2HId f H r(r + H)e-2i"rdr}. (5.24)
G~~~~fn)~~~ = ~ ~-~frr" -Ce

- ji 2r H f n

After combining exponentials in the second integral, changing variables, and expand-

ing the complex exponentials to obtain the real terms, the lowpass spectrum expressions

become
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G(f.) 2{f r (r) cos(2ir fr)dr +

J r (r) cos(27rfr)dr -

b f2H .r(r) sin(2rfr)dr), (5.25)

a = 1 - Ccos(2rfH),

b = Casin(21f,H),

C = 1 +Ca - 2Ccos(27rfnH).

It should be noticed that the maximum value of r in the above integrals is equal to

2H, which from equation 5.18 implies that the maximum value of k is one. Therefore, the

autocorrelation functions become finite length expressions. The final expressions for the

conventional SSMH power spectral density then become

G(f.) = 2{G 1 (f) + aG2 (ff.) - 0G3(fn)}, with, (5.26)

(A~) = j~ H 2I r,,(t, r) cos(27rfr)dtdr,
j=O

G 2 (fA) - j jH 2H+1 r(t,r)cos(2xfr)dtdr,

j=0

1 2H, fH 2H+I
G 3(f2) H -H 1- r,(t,r)sin(27rfr)dtdr,

j=O

rc(t, r) cos[21rhjmodH(q(t + r - j) - q(t - j))].

This analysis reflects the application of the methodology of Anderson and Lereim

to this new class of spread spectrum signals. It confirms the expected results that when

normalized to the chip rate, conventional SSMH signals have the same spectra as their

parent multi-h signals. The next section considers some numerical evaluations of these

expressions for comparison with known multi-h signal spectra.

5.3 Numerical Evaluation of Conventional SSMH Spectra

Before numerically evaluating the spectra of selected conventional SSMH systems, it is nec-

essary to comment on the normalization for the spectra. In addition to the normalization

to the chip frequency as done in the previous section, the spectra have been normalized
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to unity chip energy and the spectra have been normalized to zero decibels at the carrier

frequency. Since the spectra for real signals are being displayed, it is also only necessary

to display the single sided density.

The spectra of equations 5.26 were evaluated via FORTRAN implemented computer

programs for selected values of modulation indices. These indices were selected based on

the results from Hsu 130] and Lereim [331, which indicated the 'best' modulation codes

for bandwidth efficient modulations in terms of coding gain and bandwidth efficiency.

Additionally, the codes were selected based on the desire to have a spectrum with a flat

mainlobe and rapid sidelobe rolloff.

In order to verify the validity of the numerical evaluations, the degenerate case of

one chip per bit, i.e., conventional multi-h signaling, and with modulation indices hl =

h2 = 1/2, i.e., standard Minimum Shift Keying (MSK) was plotted. Figure 5.1 displays

the resulting spectral density and is wholly consistent with previous results [33].

The figures that follow are depictions of the spectra for the following modulation

schemes.

Modulation Indices Chips per Bit Figure

0.5, 0.75 3 5.2

0.5, 0.625 3 5.3

0.5, 0.625 5 5.4

0.583, 0.667 3 5.5

0.583, 0.667 5 5.6

0.375, 0.5 3 5.7

Table 5.1: Conventional SSMH Spectra
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Figure 5.1: Minimum Shift Keying (MSK) Spectral Density
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5.4 Modified Spread , ppctrum Multi-h Spectra

By changing the application of the modulation indices to a bit basis, the structure of the

transmitted signal is much different. This section addresses the question of the resulting

transmitted power density spectrum. The analysis is similar to the previous section, but

with different final expressions for the spectra. U;.ing the analytical results, numerical

evaluation confirms that the spectra for modified SSMH signaling resemble very nearly

those of conventional SSMH for the same modulation indices. This fact provides the

communications engineer with a great deal of flexibility in designing the LPI system.

The derivation of the power density spectrum follows the same procedure as Sec-

tion 5 2 above with the introduction of the phase as described by equation 3.6. As before.

the autocorrelation function is

r(ti,t 2 ) = C{ji(t1)e-j(t2)). (5.27)

Following substitution of equation 3.6, expansion of the series, and collection of terms, the

autocorrelation function can be expressed as

r(t1 , t2 ) - , j2,{ - o I--q(t2 -(,+ ,, )l

(5.28)

Once again, the summations in the exponentials revert to the products of exponen-

tials, and after taking the expectation with respect to a and c (fa¢ = 6(ac + 1)+ + 8(ac-

1)) yields

o_ N¢-1

r(tl,t2) - IJ l' cos[2rhnmodH,(q(t2 - (n + mN.)T,) - q(t 1 - (i + mN)Tc))]. (5.29)
m=O n=O

As in the previous case, expansion of the products yields a function that is cyclostationary;

this time over a period of HNTC. Therefore, the time averaged autocorrelation is

I H.T.oo N,-I

r() IH T jN1T 0  HI-1 cos[27rh.modH(q(tr-(n+m)Nc)T)-q(t-(n+mNc)T))]dt
"

(5.30)

Similar to conventional SSMH, the pulse shaping function has a value of zero for

t < 0 and a value of 1/2 for t > T,, therefore the infinite product becomes finite. The
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result is the autocorrelation can be written

HNT, N -i

H Tr (r) fo jI fi r,(t,r)dt, where (5.31)
H T M 0 n=O

ri(t, r) cos[27rh,,,modH(q(t + r - (n + mN,)T,) - q(t - (n + mN)T,)l, (5.32)

and ['H indicates the largest integer of the argument.

For k > 1 this equation becomes

r Cr) = C -1'(i), where (5.33)
H-1

C f i {cos(7rhjmodH)})N, and (5.34)
j=0

1 fHNT HNc-1 1ID.ToJ0 MI cos[27rh o (- - q(t - T ))]

HNT, J0 1N~mod 2

2HN -

x I- cos[2,rh ,---, dH q(t + f - jT )]dt. (5.35)
j=ONJ

In this expression, the ['] indicates the smallest integer in the argument.

Following the same procedure as in Section 5.2, after Fourier transforming, expanding

the integrals, converging the series, normalizing by the chip rate, and taking the real parts;

the spectra can be expressed as

G(f,) = 2{ r(r)cos(22rfnr)ddr +

af 2HN r(r) cos(2 rf,r)dr -

C JHN,

b 2~Sj2HN, r(r) sin(27rfr)dr, with (5.36)

a 1 - C ,cos(2rfHNc),

b C, sin(21rf,,HN,),

C 1+C2 - 2Ccos(2rfHN,),

1 fHN -2H+1 N,-]
r(r) JI- [I ri(t,r)dt, (5.37)

m=O n=o

ri(t,r) cos[27rhmmodHq(q(t + r - (n + mN)) - q(t - (n + rnNc)))]. (5.38)
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5.5 Numerical Evaluation of Modified SSMH Spectra

As in Section 5.3 above, the analytic expressions for the spectra of modified SSMH signals

are numerically evaluated for selected values of the modulation indices. The figures that

follow are depictions of the spectra for the following modulation schemes.

Modulation Indices Chips per Bit Figure

0.5, 0.75 3 5.8

0.5, 0.75 7 5.9

0.5, 0.625 3 5.10

0.5, 0.625 7 5.11

0.583, 0.667 3 5.12

0.583, 0.667 5 5.13

0.583, 0.667 7 5.14

0.375, 0.5 3 5.15

Table 5.2: Modified SSMH Spectra
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5.6 Spread Spectrum Multi-h Spectral Characteristics

Following the analysis and simulations of the previous sections, some conclusions and

characterizations can be made regarding the spectra of this class of signals.

First and foremost is the fact that the spectra have similar characteristics to their

parent multi-h signals when normalized to the chip rate. This is seen by comparison

of the evaluated spectra with previously derived spectra for multi-h signals as shown by

Lereim [301, Wilson [72], and Anderson, Aulin, and Sundberg [6]. Correspondingly, it also

implies that the spectrum of the signals normalized to the bit rate will be spread by a

factor of the number of chips per bit, while maintaining the shape characteristic of the

multi-h signal with the given modulation indices.

It is also apparent by comparison of the spectrum of modified versus conventional

modulation that the method of modulation has little effect on the resulting spectrum.

That is to say, the spectra of conventionally modulated and modified modulated spread

spp-trum signals with the same modulation indices closely resemble each other. This is

a new and exciting result in that it characterizes the results of a new spread spectrum

modulation technique, modified SSMH, in terms of existing spread spectrum signaling

results. Thus, the designer has the option from a transmitted spectrum standpoint as to

which modulation technique to use. It is also apparent, since the resulting spread specLra

have the same appearance as the parent multi-h signals, that considerable control over the

spectrum is afforded by selection of the modulation indices, the spreading rate, and the

other signaling parameters.

It is appropriate at this point to comment on the results in regard to the number of

chips per bit and the apparent noisiness of the spectra. Equations 5.26 and 5.36 reveal

that the spectra result from the product of a large number of cosine functions in the au-

tocorrelation expressions. Implementation of this number of trigonometric functions by

computer led to considerable truncation errors and rapid introduction of noise in the spec-

tra. This factor prohibited simulation at chip rates more appropriate to spread spectrum

signaling and introduced many numerical inconsistencies. However, the issues of spectrum

definition and characterization were accomplished.

Prior to discussing the detectability of SSMH signals, it is instructive to examine the
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spectrum of 'normal' direct sequence binary phase shift keying (DS/BPSK) systems and

normal direct sequence spreading applied to multi-h signals. In this situation the random

spreading sequence is applied after the modulation process as shown in Figure 5.16.

(t---- BPSK st

It fo8(t)

Figure 5.16: Traditional Direct Sequence Modulation

In the case of mul,-h signaling, the transmitted signal would be expressed as
s(t) = c(t)V - cos(wot + 0(t) + 00), (5.39)

where 0(t) is the phase trau-*'t: expression

2(t) = 2w =- c°ihiq(t - iTc), (5.40)

and c(t) is the pseudorandom spreading sequence. For DS/BPSK, the phase modulation

expression is removed and instead the signal is simply a cosinusoidal function premultiplied

by the data sequence.

The power density spectrum for these signals can be expressed as

S(f) = I-sinc tf1 * E. (G(f + fo) + G(f - fo))}, (5.41)

where G(f) is the lowpass spectrum of the modulation process.

From equation 5.41, it is obvious that the spectrum for these signals will result from

the convolution of a sinc 2 (x) envelope with the spectrum of the modulation process. In

the case of DS/BPSK, it is seen that the spectrum of the modulation process is simply an

impulsive function resulting from the cosinusoidal term in equation 5.41. As a result, the

spectra of the spread signals will have nulls at multiples of the chip rate. When processed

by radiometer detection, these nulls will produce discrete components and thus give a great

deal of information about the transmitted signal. Neither discrete elements nor nulls are

present in the spectrum of SSMH signals. The following section addresses the issue of

spectrum detectability.
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5.7 Spectrum Detectability

The issue of spectrum detectability must be addressed in any LPI environment. In this

regard, there are a two issues that are important in detecting SSMH signals.

The first is the absence of any discrete components in the SSMH spectra. Similar to

other multi-h spectral characteristics, equations 5.26 and 5.36 reveal that as long as I Ca I

is less than one, which will always be the case since the modulation indices are rational

values less that one, the spectrum will not have any discrete components. This fact is

essential in a LPI environment.

The second factor is the requirement of an unintended receiver to raise the received

signal to the power of the denominator of the modulation index sequence in order to

extract any discrete components. While it is possible for this to occur, it requires the

commitment of the interceptor to perform a great deal of signal processing in order to

extract the discrete components.

For example, the normal intercept detector may employ radiometer detection as a

first option. If the SSMH signal is squared, the following expression describes the signal,

x2 (t) = - + cos(2wot + 20(t))]. (5.42)

This signal has the same form as the original SSMH signal with the addition of a dc bias

and at twice the original frequencies. The equations of Section 5.2 apply directly after

incorporating the factor of two in the amplitude of the pulse shaping function and operating

at a carrier frequency of twice the previous value. Figure 5.17 shows the spectrum of this

signal and can be compared with the spectrum of the transmitted signal in Figure 5.2.

Obviously, there are no discrete components in either.

Similar analysis applies to signals raised to greater powers until the signal is raised

to the p-th power (recall that p is the denominator of the set of modulation indices).

At this point discrete components appear at p times the carrier frequency and multiples

depending on the modulation index. As a result, the spectrum is much more detectable

and an unintended receiver can gain at least partial parameterization.

With the transmitted spectrum characterized, it is now appropriate to determine if

the signal can be transmitted at sufficiently low signal-to-noise ratios to take advantage of
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Figure 5.17: Signal Squared Spectrum

the spectral characteristics and still be detected by an intended receiver. The next chapter

addresses the issues of receiver design and signal detection.
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CHAPTER 6

Receiver Structure

This chapter addresses the issues incumbent in detecting spread spectrum multi-h signals

in an additive white Gaussian noise (AWGN) environment and decoding the transmitted

information. While significant research has been done on multi-h receiver structures as a

generalization of CPM signaling, the addition of another level of detection and synchro-

nization is novel. The bit and chip synchronization and timing are assumed to be known

exactly. Additionally, the intended receiver is assumed to have complete knowledge of the

spreading cude and the modulation index code. The receiver still must detect and decode

the chip sequence and ultimately the transmitted data. This can be done either coher-

ently, if full knowledge of the arbitrary initial phase offset is assumed, or noncoherently,

if the phase offset is assumed to be random. For this work, it is assumed that complete

coherency can be established and the phase offset is assumed to be zero.

Following a maximum a posteriori probability derivation, it is shown that the SSMH

signal sequence can be detected using the Viterbi Algorithm with bit metrics that are the

sum of the chip metrics for that bit. A simple receiver structure is derived and numerically

evaluated in Chapter 8 following derivation of the performance bounds of this signaling

structure (Chapter 7). It is shown that SSMH signals can be successfully detected at 'low'

signal-to-noise ratios thereby creating a viable LPI signaling structure.

6.1 Coherent Receiver Structure

The work of Osborne and Luntz[451 first derived the maximum likelihood (ML) decision

statistics for continuous phase frequency shift keying (CPFSK) signals. Assuming equally
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likely transmitted digital sequences, the received signal can be expressed as

r(t) = s(t) + n(t), (6.1)

where n(t) is white Gaussian noise with a two sided variance of N0/2. Following the

derivations of Viterbi and Omura [69], Jackson showed [31] that a digital sequence is

maximum likelihood detected with a decision metric

(1 ( C t) I s (t, a, h, c) :" p~~) t,6, h, c)), (6.2)

where p(r(t) I s(t,a,A,g)) is the probability distribution (density) of the received sequence,

r(t), given the transmitted sequence resulting from a, c, and h.

For a sequence of N symbols (bits) and the white Gausssian noise distribution, this

decision metric reduces to a log-likelihood metric of

2 fNT ( hc)dt ' 2 r(t)s(t,,h (6.3)"N W (ttc'hcd a, < -o -
1 N "o o No --

This decision metric for SSMH signals can be expressed

N Nc-I (,+1)T

l= E E I r(t - (j+ iN,)T,)s(t - (j + iNc)T,,ai,h(i+j)modHt,cij)dt. (6.4)
i=O0 -O T

Thus, the decision metric for a sequence of N bits is

N-I

E Xi, (6.5)
i=0

where the individual bit metrics are

A N = E r(t - jT )s(t - jT¢, a, h(i+,)modH, ci,)dt. (6.6)
j=0 T

These expressions indicate that the overall decision metric is the result of the sum of

bit metrics, which in turn are the sum of 'chip' metrics. Equation 6.6 also indicates that

the metrics are the correlation of the received signal with the possible transmitted signals.

Hence, the optimal receiver computes the maximum correlation over all possible received

sequences. Forney [25] and others [6,301 thave shown that for sequences from a finite-state

Markov process, such as the multi-h signals defined in Chapter 3, the Viterbi Algorithm

is a recursive method to exhaustively search for the optimal sequence.
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The final receiver structure is defined after determining the correlation filter struc-

ture. First, the chip metrics for rectangular signaling over the ith bit and jth chip can be

written in the following manner,

r(t )cos(2rot + ti )dt, (6.7)

A(ki = -1,ci,0oi) r(t) cos(21rfot - 7fcihjt + Oj)dt. (6.8)

These expressions indicate an array of 2H times the number of states correlators. Expand-

ing these expressions on the initial phase angle yields quadrature forms of the correlators.

That is,

A(1 1i iOj-1 o i 69
A (-Ci,cij,Oij) 12 -Q2 sin 0iJ

where over a chip interval

f = r(t) cos(27rfot + 7rcTht (6.10)
T.7rc. A. IQi = r(t)sin(27 t+ 7 )P" t, (6.11)

fr n + TI:h)t.
12 = J r(t) cos(2;rfot - )tit, (6.12)

Q2 = r(t)sin(2 rfot - t )dt, (6.13)

These equations imply a bank of 4H correlators and a phase rotation network to account

for the allowable phases at the start of each chip interval.

The final requirement in defining the receiver architecture is to account for the

changes in the modulation indices and the chip sequence. Minor modification to the

simple switching circuitry shown by Sadr [541 allows proper multiplexing of the quadra-

ture elements to select the appropriate modulation index and the known chip sequence.

The resulting multiplexing circuit is shown in Figure 6.1, where hj = logic(+l) for mod-

ulation index hl, h, = logic(0) for modulation index h2, Ci, logic(+l) for cj = +1, and

cij= logic(O) for cij= -1.

The flexibility of the modulation scheme and receiver structure is noted here where

clocking both the chip and modulation indices at the chip rate will give conventional

SSMH, while clocking the modulation indices at the bit rate (still maintaining the chip

rate on the chips) will give modified SSMH.
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hij

Tc I,Q

Figure 6.1: Receiver Multiplexer Circuit

The receiver architecture in toto is shown in Figure 6.2.

It should be noted at this point that the quadrature components can also be obtained

on a baseband basis as shown by Mazur [41] by heterodyning the received signal with

quadrature signals at the carrier frequency and lowpass filtering. This is accomplished by

expanding the arguments in equation 6.13 as

I, = IC - QS, (6.14)

Q, = QC + IS, (6.15)

12 = IC+QS, (6.1G)

Q2 QC - IS where, (6.17)
T, 7rhjt,

IC = r(t) cos(2rfot) cos( " !"h )dt, (6.18)

QS = fTr(t) sin(2 7rfot)sin(
-- -t)d , (6.19)

Jo T

is = r(t) cos(27r fot) siri(- )dt, and (6.20)
f'. )dtand

QC r(t) sin(2.rfot) cos(-T )dr . (6.21)Jo

The bandpass version is shown in Figure 6.3.

Prior to evaluating this receiver structure, the analytic performance bounds to tile

modulation technique are derived in the following chapter. The receiver derived in this

chapter is then numerically evaluated by computer and the performance compared to the

bounds.
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Figure 6.2: Maximum Likelihood Receiver Structure
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Figure 6.3: Lowpass Quadrature Implementation
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CHAPTER 7

Performance Bounds

The error performance of the maximum likelihood receiver of the previous chapter is de-

pendent on the distance properties and performance bounds for the signaling structure.

In this chapter, it is shown that the error performance is dependent not only on the mini-

mum distance of the signaling structure, hut also on the complete signal phase transition

structure. The distance properties are shown to result from the sum of the distance prop-

erties of the chip .nIervals. Upper bounds to the bit error probability are analytically

derived and shown to be dependent on the modulation code and the spreading code. It is

shown that SSMH performance can exceed that of conventional signaling schemes such as

DS/BPSK.

7.1 Performance Bound Analysis

The analysis of receiver performance begins with the approach of Wozencraft j75], who

showed that the probability of error in deciding between any two signals, s(t) and s2 (t),

in AWGN is dcpendent on the Euclidcan distance, d1 2 , separating the two signals. Thus

)0_M2 1 _ 2
P , (S2 I S ) di / e- d n , (7 .1)

f -- 2 dn,

Pe(s2 181) Q ( 1 ) (7.2)

where

(X) =e--_ dx. (7.3)

L--lmm~im
h

ii ImII VrIIII m
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Expanding this concept to more than two sig.,ahs and incorpsrp.ting tlhe total probability

theorem yields
K

P, = ZP(e I s,)P(s,). (7,4)
i= 1

Viterbi [691 extended this concept to a digital sequence of N bits with the result that

the pairwise probability of error between any two sequences of length N bits is expressed

as
P,(CLN, d 2 (N). (7.5)

P~aN) = Q 2No'

This expresses the probability of error between two sequences that separate at some

point, nT,, and merge again after N bits at (n + N)T.

The complete probability of error is found by ensemble averaging over all possible

error event sequences. This average is difficult to calculate and as a result is generally

upper bounded by the union bound

PQ d2 (A) )P(N). (7.6)
&j' ! FE 2No:&IV a'

Equation 7.6 reflects the fact that the error probability is found by fixing the error

sequence and averaging over all possible transmitted sequences. This is the same approach

taken by Hsu [30] for multi-h phase coding and by Zehavi [761 for trellis codes.

The result for equally likely transmitted signals is the total error probability and is

found by summing the probabilities of error for all possible error sequences against all

possible transmitted sequences. This is expressed as

p, -< Q( dk )P(QN), (7.7)

all errors

where d, is the Euclidean distance separating two signals of a particular error event length.

Equation 7.7 also reflects the fact that the probability of error for each error event is

simply a pairwise comparison of two sequences over a given length. This implies the im-

plementation of the 'difference' sequence approach as shown by Hsu [30] and Anderson [6].

Since the phase changes of the signaling scheme correspond directly to the information

sequences, the difference phase state approach can be invoked where

Nc -1

i + 1) = [ G(i) + E irhj-ri[ mod 27f, (7.8)
i=0
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and -ij is the difference,

7,i = cij , - c &i (7.9)

The all zero path then corresponds to error free transmission.

Equation 7.9 illustrates a key and essential difference between the current analysis

and that of Hsu and Anderson. Although the chip sequence is known a priori by the

transmitter and receiver, the chip values help determine the phase changes on a chip basis

and hence contribute to the difference state transitions. The Markov process structure

is not disturbed indicating that the phase changes over a bit interval are the sum of the

changes over each chip interval. Hence equation 7.8 can be written

N, -1

AO(i + 1) = [AO(i) + E AO,jj rod 2,r, (7.10)
j=0

where,

AOjj = irh(j+.i)modH"/hi. (7.11)

The result of this analysis is that a 'difference' state structure and analysis can now

be followed similar to Anderson and Hsu, but the state diagram must account for all

possible chip sequences. Additionally, the analysis must include all possible transmitted

phase states.

To perform the difference state analysis, equation 7.7 must be modified in two ways.

The first reflects the fact that the bit error sequences, yj = a - &j, can occur in different

ways and must be appropriately weighted. That is, the values of -t can occur as follows.

O , ifck=1,&=l
= 0, if0=-1,&=1 

(7.12)
0, if Ct= -I,&-- -I

= +2, ifa = 1,& = -1 (7.13)

= -2, if 1 -,&= +1 (7.14)

Since y; = 0 can occur twice as often as - = +2 or -y = -2, equation 7.7 must be modified

to reflect this weighting.

Secondly, equation 7.7 must account for the different possibilities for the chip interval

dibits. For bit interval differences of - = 0, there is no effect since no error is made, but

for ji = +2 or -y = -2 all of the possible chip values and sequences must be considered.
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For example, for a three chip pcr bit sequence, and ci 1,& = -I (-ri = +2), there

are 23 = 8 possible -yj sequences for the set of three chips depending on the values of the

chips. Hence,

Cl Ci2  Ci3 "il 174 %3

-1 -1 -1 -2 -2 -2

-1 -1 +1 -2 -2 +2

-1 +1 -1 -2 +2 -2

-1 +1 +1 -2 +2 +2

+1 -1 -1 +2 -2 -2

+1 -1 +1 +2 -2 +2

1+1 +1 -1 +2 +2 -2

1+1 +1 +1 1 +2 1+2 +21

Table 7.1: Chip Difference Sequences

These chip difference sequences have a substantial effect on the phase transitions and

on the distance characteristics, which is a significant new finding in this research.

The end result is equation 7.7 modified to be

where,
N N

v II I Pr(-",j I -)Pr(",). (7.16)
a=l j=1

It should be noted here that since the weighting for the bit difference, -,, is -, = 1/2

for both - = +2 and -yj = -2, and coupled with the fact that the phase transition

diagrams are symmetric, this weighting will reduce to only the conditional probability of

the chip difference sequence. (Viewing Table 7.1 in reverseorder for "r = -2 gives the

same results as for 'i - +2.)

The resulting bit error probability is then

-N 0  (7.17)

where yj is the number of bit errors in each error sequence with separation distance, di.
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Prior to concluding the bit error analysis it is necessary to digress for a moment to

consider the methods in determining the distances, di, in equation 7.17.

7.2 Distance Analysis

The previous section showed that the error probability of an error event over N symbols,

is (from equation 7.1)

[NT.f NT,

P(s 2(t) I sI(t)) P[f s 2 (t)r(t)dt > j si(t)r(t)dtl (7.18)

- Q(- ) '  (7.19)

where d 12 is the Euclidean distance between the two signals.

The squared distance can be expressed as

d2(N) = (SI(t) - s 2(t))
2 dt, (7.20)

but this distance is cumulative over bit intervals as seen by expanding the integral to

T, 2TI NT.
-2(N) (T - S2)

2 dt + - s 2)+dt - .. (s1 - s 2)2 dt. (7.21)
fo fT. (N -I) T.

For SSMH signals these integrals over a bit interval can be further expanded to

N T 2N' T.
d 2(N)= ( - s)2 dt + (s1 - s)2 dt +..., (7.22)

JO J N T

which can be rewritten

N Ne-I 1~ iT

d12 (N) T, (si 11 (t) - s2 q2 t)) 2 dt; (7.23)
i= j=0

and implies that the distance squared on a bit basis is cumulative and also cumulative

over the chips per bit.

'A' n-. o . that the signal over bit i and chip j is defined as

8 (ai, hii, cij, ij, t) = 2E,- cos(woct + 27rhjacjj(t) + O0ij) (7.24)

s2(6t> hjj,cjj,Ojj,t) = - cos(wot + 2frhj&jc1 ,q(t) + 0i,), (7.25)
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and since ci, hi, and q(t) = t/2T, are known, substitution yields

d 2N N -l I (j+')T

d12 (N) = 2E Z- E E ,-cosl2hijci(ci-&)q(t-jT,)+(Oiji-Oij)dt. (7.26)
i=1 j=O ,

Letting AOij Bij -ki, and AGj+ = AOj+rhjjc,,(ai-&i), and substituting for q(t-jT,)

yields

=,2E, I if-AOtj+ AG

d. 2(N) FN I Z cI ioS(,A0+,_ifi A(A, if AA0', (7.27)
1 2Ec = Z o11 cos(AO,,,+l), if A0,,+l j+1

The result of this investigation is the fact that on a bit basis the distance between two

signals is cum:lIative from bit to bit. In addition, the bit distances are the incremental sum

of distances over the chip intervals. Coincidently, the chip distances are directly dependent

on the differences of phase states at the chip boundaries.

For large signal-to-noise ratios, and as the number of bits considered grows iarge, the

probability of error will be dominated by a few error events with small distancei. Hence,

a minimum distance between any two signals will dominate and be defined as the 'free'

distance, where

dfree(N) = lim mind, (N) m i n. (7.28)
N - oc

Finding this distance requires the exhaustive search of all signals whose phase paths split

at some point and remerge at a future point. However, Aulin [15] and Hsu 1301 have shown

that the Viterbi Algorithm, as a dynamic programming technique, can be used to find the

minimum distance in a trellis structure of the difference states of the original state trellis

structure. Hence, a comparison of all signals that depart from the error free path and

remerge at a future point will characterize the distance distribution. The current work

can not take advantage of this methodology however, since the bit differences are not

constant over a bit interval due to the spreading sequence as discussed in the previous

section.

However, assuming all signal paths in the trellis structure begin at some point nT,,

that is, assuming error free transmission up to time nT., the state transition diagrams can

be used to determine the shortest distance to return to the all zero path. This distance

will become the minimum distance for the code and determine the constraint length.
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The determination of the minimum distance is important for several reasons. First,

from equation 7.17 for high signal-to-noise ratios the free distance term will dominate

the error probability. Secondly, the depth, or number of bits required to obtain the free

distance, will determine the minimum decoding delay for a Viterbi Algorithm processor to

obtain maximal performance. Finally, if the entire distance distribution for a given code

is known, the performance in relation to the minimum distance can be determined. For

example, if a code has a significant number of error events at distances that are close to

the minimum distance, its performance may be worse than a code with a single but rarely

occuring minimum distance.

It should be noted that as shown by Hsu (30], the starting index will affect the distance

metrics for multi-h signals; therefore, the minimization of distance must also include a

minimization over all possible starting indices. This is accomplished by assuming that it

is equally likely that each index will be chosen first; therefore, the minimum distance is

chosen from all distances that arise from a given modulation index code.

7.3 Probability of Error Upper Bounds

Having established that the separation distance between two error sequences is cumula-

tive over chip and bit intervals, and having defined the free distance, we return to the

determination of the upper bound on the probability of bit error.

From equation 7.17 and equation 7.27, the probability of bit error is upper bounded

by

Pb 0 mi-Q( , (7.29)

Pb Z d2.Q Eo 7.0
i= I

Introducing the term, d E,/No, and using the equality Q(\/xTy) _ Q(Y/)e - / , a

0, this becomes

d~cc dIE,

1 Q ... E2No (7.31)
i=l

At this junction, the signal flow graph and difference state analysis of Hsu (301 and

Anderson [61 are invoked. The split bit difference state transition diagram for a given



modulation index code describes the possible phase difference transitions. For an error

event beginning at nT, then returning to the all zero path at (n + N)T,, the overall path

gain is
N

T v i Dd EA L. (7.32)
ti

As shown by Hsu, if TA represents the split difference state transition for a particular

bit modulation coding over one bit, then TATA represents the error transition over two

bits, and by extension

T = TA + TATA + TATATA +

represents the error transitions over an infinite length. This situation reflects a decoder

with unlimited memory. For multi-h codes the bit modulation coding changes from bit to

bit; i.e., for a two index code there are two bit transition matrices, TA and TE. Therefore,

the unlimited length transition becomes

T = TA + TATB + TATBTA +.

Since the modulation indices and transition matrices are periodic, this reduces to

00

T = Z(TAT 3 )k(TA+TATB), (7.33)
k=O

T = (1-TATB)-'(TA + TATB), (7.34)

and the upper right corner term of this transition matrix represents the sum of all the

branch gains, i.e.,

T(1,p + 1) = E ZvDd.,E",L, (7.35)
i=1

Since the error events could begin during either coding interval, two possiblities for

the transitions occur; thus

TI = (1-TATB)-'(TA+TATB), (7.36)

'2 = (1-TBTA)-(TB+TBTA); (7.37)

Applying these resalts to equation 7.17 results in

I'eli ) )e <Z e 2N0, (7.38)

P'1N 2N Ti (7.39)
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and

Pbl f EE, • (7.40)

Alternatively,

PbJ2 Q - 3 0,o -T De,/,oE=1L_ • (7.41)

Since it is equally likely that the receiver will begin decoding on either modulation

code sequence, the total probability of bit error is the average of the individual code bit

error probabilities. Hence.

Pb =- -(PIl + Pb)2). (7.42)

As a final note, equation 7.40 can be rewritten

1 d7 E dE, , 2
Pbli - erfc( L- )ed ' "To '] = E/ u Z ,L ,  (7.43)

2 2N ]8E

Additionally, using the approximation Q(z) <_ e- /V /- x, then

Pb8, IE (7.44)

V No

In the following section, equation 7.43 and equation 7.44 are used to determine the

upper bound to the bit error for selected SSMH coding schemes.
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7.4 Selected SSMH Performance Bounds

In order to implement the analytically determined bound expressions of the previous sec-

tion, it is first necessary to determine the bit transition diagram for the specific modulation

scheme and code selected. For illustrative purposes, the - 1 and , modulation codes2'4 8 8

were selected. The first was used because it is the simplest, and the second was selected

due to its flat spectral characteristics and coding gain as shown by Lereim [331.

A recursive FORTRAN implemented routine was used to determine the distance over

a bit interval and difference phase transitions for all possible beginning difference phases

and all possible chip difference sequences, where there are 2N possible sequences if the

bit difference is not zero. The following figures show the resulting bit difference transition

diagrams.

Modulation Indices Figure

Conventional

.5, .75 7.1

.75, .5 7.2

.5, .625 7.3

.625, .5 7.4

Modified

.5 (4 state) 7.5

.5 (8 state) 7.7

.625 7.8

.75 7.6

Table 7.2: Selected SSMH State Transition Diagrams; N, = 3

As was inferred in the previous section, inspection of the state transition diagrams

reveals the minimum distance required to leave the all zero path during an initial bit

interval and after a free distance minimum to return to the all zero path. For example,

examination of Figure 7.2 shows that an error event over just one bit interval will return to

the all zero path with a minimum distance of 2.79. On the other hand, if the opposite order

of modulation indices were considered as the first bit interval, it would require alternation
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between the two state diagrams (Figure 7.1 and Figure 7.2) over 3 bits for the error event

to terminate and obtain the minimum distance of 7.3.

After inspection of the transition diagrams, the minimum distances for both mod-

ulation schemes with a spreading code of three chips were determined. Table 7.3 below

summarizes these important figures of merit.

Modulation Indices Spread Rate Dmi n  Depth

Conventional

.5, .75 3 7.30 3

.75, .5 3 2.79 1

.5, .625 3 6.23 3

.625, .5 3 9.37 4

Modified

.5, .75 3 12.00 3

.75, .5 3 6.67 3

.5, .625 3 9.51 4

.625, .5 3 7.24 3

Table 7.3: Selected SSMH Minimum Distances

With the difference state transitions as shown above and the free distances, equa-

tion 7.43 or equation 7.44 can now be solved to determine the upper bound to the bit error

probability. Once again, these equations were numerically implemented via FORTRAN

code with the partial differentiation accomplished with numerical differencing. Figure 7.9

below shows the resultant upper bounds to the bit error probability for the selected mod-

ulation indices with a spreading rate of three chips per bit, and Figure 7.10 reflects the bit

error probability bounds for seven chips per bit. The circled path reflects Conventional .5,

.75 coding, the triangle path is for Conventional .5, .625 coding, the plus path delineates

Modified .5, .75 coding, and Modified .5, .625 coding is shown by x's. The unmarked path

corresponds to DS/BPSK.

At this point it is appropriate to comment on the relative merits of these findings

vis-a-vis more realistic spreading rates. The results above incorporated a spreading rate
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of three chips per bit while normal spreading rates are on the order of one thousand chins

per bit. However, the number of possible chip difference sequences is on the order of 2 N ,

implying that for a chip rate of 1000 chips per bit, an unreasonably large number of chip

difference sequences would have to be considered for each starting phase. As a result, only

small order chip rates were considered in this work to verify the procedure. Numerical

evaluations in Chapter 8 will consider more reasonable figures of 127 and 1023 chips per

bit.
With the analytical bounds to the performance of the modulation scheme established,

it is appropriate to consider the receiver structure of Chapter 6. The following chapter

discusses the numerical evaluation of this receiver and comparisons can be made with the

established bounds.
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CHAPTER 8

Receiver Evaluation

In Chapter 6 the receiver structure and maximum likelihood receiver metrics for a SSMH

receiver were derived. This chapter numerically evaluates the analytically derived receiver

in an additive white Gaussian noise environment. The individual chip metrics are repre-

sented as samp!ed outputs from matched correlation filters with colrelated noise samples

added to the noise free filter outputs. This arrangement represents the received signal

corrupted by white noise and the received signal processed by correlation filters. The

remainder of the receiver is shown to consist of a Viterbi Algorithm processor, which use,

the sum of chip metrics over a bit interval to form the bit branch metrics. The receiver is

shown to perform within the bounds established in Chapter 7.

With the groundwork of Chapter 6, the signal components of the chip metric calcuia-

tors are first derived. The correlated noise samples are then determined using uncorrelated

white noise samples as a source and a linear transformation to achieve the appropriate

correlated noise samples. With the appropriate multiplexing to insure the proper chip and

modulation index alignment, the chip metrics are then summed to form individual bit met-

rics over a bit interval. A state traceback implementation of the Viterbi Algorithm then

forms the decision processing. Throughout the evaluation, perfect phase synchronization,

bit and chip timing, and modulation index synchronization are assumed.

8.1 Correlation Filters

Equations 6.5 and 6.6 from Chapter 6 a. repeated here to recall the maximum likelihood

chip and bit metrics on which the decision making process is based. The bit metrics over
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bit interval i are the sum of the chip metrics, hence

N, -1

A, F_ Aj,(81
j=0

where the chip metrics are

A = r(t - jT )s(t - JTc, a,, h(t+,)modH, ct)dt. (8.2)
jT

These expressions reveal two key factors; first, that the bit metrics result simply

from the sun, of chip metrics, and, secondly, that the chip metrics are obtained from

the correlation of the noise corrupted received signal with all of the possible transmitted

signals.

It should be noted at this point that previous works in this area have taken the

approach of orthonormalizing the signal structure and adding independent white noise

samples to create the noise corrupted received signal. An alternate approach is taken here

for the first time with this class of signals. Correlated noise samples generated by linear

transformation of independent noise samples will be added to the noise free samples of the

output of the correlation filters. The signal components of the filter outputs are addressed

in this section and the following section addresses the noise components.

As shown in Chapter 6, expansion of the metric expressions above for binary signaling

and the possible beginning phase states yields over each chip interval

7'" Xci, h, ____ t
A(ki = lci,, Oij) = r(t) cos(2rfot + c + O,j)dt, (8.3)

fo
T  

TI:h3
T - rc h t

A(D, = -1', hO) = r(t) cos(27rfot TP + Ojj)dt.

These expressions indicate an array of 2H times he number of states correlators. Expand-

ing these expressions on the initial phase angle yields quadrature forms of the correlators.

That is, [A(+ar,,cij, 9j) 1 [I -Qi1[ Cos9,, 1 (8.4)
A (-ai, ij, O'j) 12 -Q2 sin Oij

where

S T= r(t) cos(27rfot - )htd, (&5)

ioT
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Q fT r  sin(2rfot +chj t )dt, (8.6)Q1= r(t) si(2fo T ,
foT  t;I:.7

12 = r(t)cos(27rfot - Trc h ), (8.7)

Q2 = T, r(t)sin(27rfot -rc h )dt. (8.8)

These equations imply a bank of 4H correlators and a phase rotation network to account

for the allowable phases at the start of each chip interval.

The received signal is

r(t) = s(t) + n(t),

where n(t) is AWGN with variance, No/2, and s(t) is the transmitted signal

/2E e r h1 1jOq ci 4 t

s(t) \ -- cos(27tfot -7 To'c-,(t)). (8.9)

This expression represents a signal transmitted over any bit interval, i, and chip interval,

jT, to (J+ 1)T,, with chip multiplier, cij, data bit, a,, modulation index, h(t+j)m~dH = hij,

and initial phase angle, 4,(t).

Substitution in equations above gives

= [s(t) + n(t)] cos(27rfot + -- )dt, (8.10)

T rcijhijt
Qi = j [s(t) + n(t)] sin(2rfot + - )dr, (8.11)

12 JT f s(t) + n(t)] cos(27rfot - rchiit)dt, (8.12)

Q2 = [s(t) -4- n(t)] sin(2 rfot 7rCjh t)dt. (8.13)0 TC

After multiplication of terms, these equations are expressed as

I, = SIC + N1C, (8.14)

Q1 = S1S + NIS, (815)

12 S2C+N2C, (SC)

Q2 - S2S + A'2S, (8.17)

where

SIC = s(t) cos(21rfot + 7ry 'h. t )dt,
Jo 7', (8.18
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N1C = n(t) cos(21rfot + )dt,

SIS = f s s(t) sin(27rfot + f rc3ht )dt,
J0 Te

N1S = ] n(t) sin(21rfOt + -- )dt,

$2C = J1 s(t) cos(2rfot - iihilt)dt,.r Tcih t

N2C = f n(t) cos(2irfot - r., I )dt,

fT - Archt. t
S2S = s(t)sin(21rfot - ) ,

N2S= f n(t) sin(21rfot - 7rc )dt.

For a given ai, cij, and hij, the expected value of these expressions will give the signal

components of the correlation filters (Note an alternate approach is to assume simply a

noise free situation). As an example,

S{1} = f{S1C+ N1C}, (8.19)

e{IC} = {S1C}+{N1C}, (8.20)

C{l11 SiC, (8.21)

since n(t) is white Gaussian noise of mean zero and variance No/2.

Following this procedure for each term, eliminating the double frequency terms, and

normalizing the time interval yields for aic,i = +1,

If cos( L(O))

Q" _ c - sin(0(0)) (8.22)
1-}2 sin(2rh1 ) OS( '(O)) (i-cos(2 h,,)J

12  cosi (0)) 1- 2rh,) sin(t(0))

2,rh, 2,rhii
11-cos 27rh,. i jh

.
5 )j cos(,go) _ in2hj sin00)Q2 jajci=+l~hsj ..... i, ( 1 .... , ( (

and for ac i = -1,

sn(2rh ) cos(0(0)) + Ii-cos(2h,,')j sin(C(0))

2ch o ) 21rh,, MOD

_ 2iA,(8.23)

Qj ~I E 1cos(2irhj)j COS(0(0)) _ i~n(2,rhj,) sin (V(0))1 
cos(0(0))

Q2 laj~j=-I,hjj - sin(0(0))
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These equations form the basis of the noise free signal components at the output of

the correlation filters. The next section continues the analysis to derive the correlated

noise samples to be added to these signal components.

8.2 Correlated Noise Samples

The determination of the correlated noise samples begins with equations 8.18 from the

previous section. However, now we seek the covariance matrix, C, of the four Gaussian

signals I,, Q1, 12, and Q2.

An example will illustrate the procedure. Hence,

C1 1  = C{(1h) 2} - &2{Ii}, (8.24)

= {(SlC+N C)2 ) -el{jl},

({S1C2 + 2(SIC)(NlC) + (N1C)2 } - e2{11 ,

F{SjC 2 } + 2S{(S1C)(N1C)} 4 {NjC 2 } - EI{Ij.

Using the results of the previous section, the signal terms cancel and the since the mean

of n(t) is zero, the product term is zero. Therefore,

C 1 , = C{N1C'}. (8.25)

After substitution for N1C, normalization by T¢, and neglecting the double frequency

terms, this expression reduces to

f{] n(u) cos(2rfou + 7o o )du fnv) co5(7tfov +

r -- {n(u)n(v)}cos(2rfou+ cos(2rfov + " )dudv,
No ' T r s r~

2No f Tf 65(u - v) cos(21r fou + ' I- ) cos(21rfov + ! )dudv,f~c rh,,v d
No T cos 2(2xrfov + -r )dv,

=2-Jo

No
4

The result of following this procedure for all of the autocovariance and cross-covariance

terms is the covariance matrix below for the multivariant Gaussian random variables for
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the outputs of the correlation filters,

1 0 sin(2irhii) -1+CO8(2rir,)-2rhii 21rh ii

0 1 I-cos(2irh,i) 9in(21rhi)No 0 2,rh,, 2rh,i  (8.27)4 sin(2 hi) 1-co,(2,h, i) 1 0
27rh,i 2rh,

-1+cos(2whj,) &in(2whj,) 1
2rhii 2rhi,

Examination of this covariance matrix reveals that the values are constant over a

chip interval and depend on the modulation index. As a result, the evaluation need only

maintain proper index synchronization and this covariance can be used to determine the

correlated noise samples.

This covariance matrix gives the relationship that must exist between samples of

the random quadrature components at the output of the correlation filters. The previous

section gave the noise free signal components that would appear at the outputs. Now

using the covariance matrix, a method can be established to add correlated noise samples

to the noise free signal components so that the random variable signal components have

the appropriate covariance.

As shown by Papoulis [46] and others, including Stark and Woods [61], if selected

properly, a linear transformation on a correlated Gaussian process could yield an uncorre-

lated Gaussian process. The inverse approach is taken here, where now four uncorrelated

Gaussian random variables are transformed by linear transformation to a multi-variant

Gaussian random variable with a known covariance.

Following the derivation of Stark and Woods [61], ifY = DX, where X is a correlated

multi-variant Gaussian random variable and Y is an uncorrelated multi-variant Gaussian

random variable, then

C = rC DT = 1, (8.28)

where I is the identity matrix of order equal to the number of random variables, C x is

the covariance of the random variable X, and Cy is the covariance of the random variable

Y. Then D = Z rT, where

il2  0 ...

Z = T- 2 0 v 2 (8.29)
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with vii the eigenvalues of matrix !2x, and U is the corresponding eigenvector matrix of

Cx.

This implies that

X = - _(.)

will transform uncorrelated random variables Y to correlated random variables X with

covariance Cx and

Cx = (8.31)

LX -- D-IL(D-l)T, (8.32)

where

D - I : (zuT)- I (8.33)

= (ur)iz-

- UZ -1

since U is unitary (LT - U-1), and now

Z - = o \v"22 (8.34)

Then
(D1 -1)T : Z-' r ,  (8.35)

and

!2X (uZ- i)Z(_z-lU)T. (8.36)

This equation indicates that a linear transformation of D-1 applied to uncorrelated

random variables Y will yield correlated random variables X with known covariance Cx,

if D is the matrix

\/v 1 0 ...

fD- 0 \V2 (8.37)

where vii are the eigenvalues of Cx, and U is the eigenvector matrix of C X .
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Applying these results to the evaluation at hand implies that a linear transformation

applied to four uncorrelated equal variance Gaussian random noise variables will yield four

Gaussian random variables of known covariance, if the linear transformation is the inverse

of the matrix product of the eigenvalues and eigenvectors of the covariance matrix. Since

equation 8.27 delineates the desired covariance matrix, the necessary transformation can

be obtained from the eigenvalues and eigenvectors.

A FORTRAN program was used to determine the eigenvalues and eigenvectors from

each of the covariance matrices for the selected modulation indices. Then using a random

Gaussian generator with a variance of 1, (No = 2.0) the transformation matrices were

determined. The tables that follow show the values of the covariance matrices and the

transformation matrices.

Covariance Matrix

.5 0 0 -.3183

0 .5 .3183 0

0 .3183 .5 0

-. 3183 0 0 .5

Linear Transformation Matriz

-. 0218 .3010 0 -.6388

-. 3010 -.0219 .6388 0

.3010 .0219 .6388 0

-. 0219 .3010 0 .6388

Table 8.1: SSMH Modulation Index - Transformation Matrices

The correlated noise samples, N1C, N1S, N2C, and N2S can now be added to the

noisefree signal outputs of the correlation filters to produce noise corrupted correlation

metrics. The next section addresses the calculation of the chip metrics to produce bit

metrics and the subsequent decision making process.
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Covariance Matrix

.5 0 -.0900 -.2174

0 .5 .2174 -.0900

-.0900 .2174 .5 0

-.2174 -.0900 0 .5

Linear Transformation Matrix

.1392 .3361 -.2320 -.5602

-.3361 .1392 .5602 -.2320

.3638 0 .6063 0

0 .3638 0 .6063

Table 8.2: SSMH Modulation Index - Transformation Matrices

Covariance Matrix

.5 0 -.1061 -.1061

0 .5 .1061 -. 1061

-.1061 .1061 .5 0

-. 1061 -. 1061 0 .5

Linear Transformation Matrix

.2958 .2958 -.4031 -.4031

-.2958 .2958 .4031 -.4031

.4183 0 .5701 0

0 .4183 0 .5701

Table 8.3: SSMH Modulation Index s Transformation Matrices
4
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8.3 Metric Calculations

With the noise corrupted outputs of the correlation filters, the chip metrics can be calcu-

lated from equation 8.3 and must be accomplished for each possible phase state. Hence,
A' T ° + G,,)dt, (8.38)

A(ai = +1, c~i , ij) = r(t) cos(2rfot + Trctjhit

T  o s f ci j h, t
(a, = -1, c i , ,Oi) = r(t) cos(21rjot - T + Oi,)dt. (8.39)

A phase rotation network accomplishes this calculation for each state, Oi .

The overall bit metrics from equation 6.5 are just the sum of the chip metrics over a

bit interval. This summation is accomplished by performing the chip metric calculations

during each chip interval and adding the appropriate metric to the partial sum metric

from the previous interval. This process requires determining the next phase state for

the given modulation index, chip and bit values. The partial sum metrics, A+ and A-,

for each next state can be found by adding the chip metrics to the partial sum metrics

of the previous beginning state. After N, chips, the bit metrics are determined at each

phase state as the metric sums t At and E v-' A-. The phase transitions from bit

beginning phase to bit ending phase are calculated knowing the chip sequence.

The random input data is generated by a uniform random number generator and each

chip value is randomly generated by a uniform and independent random number generator.

Since the receiver is assumed to know the chip sequence along with the transmitter, these

values are maintained throughout the bit interval.

8.4 Evaluation Implementation and Results

Using the bit metrics as determined in the previous section, a Viterbi Algorithm processor

makes a bit decision after a delay of ND bits. The algorithm was implemented using the

state traceback method in FORTRAN to make a majority logic decision after observation

over the predetermined bit delay. This delay was selected to exceed the minimum distance

for optimal performance from Chapter 7 for the modulation indices in use.

An overview diagram of the evaluation receiver is shown below in Figure 8.1.

The figures that follow show the evaluation receiver bit error rate performance and
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A

N10 I Nis
N 20: N2S

AWGN

Figure 8.1: Evaluation Receiver

the analytically determined performance bound for the indicated modulation criteria. It

should be noted that the degenerate case of one chip per bit was used to verify the validity

of the evaluation routine. The results agreed completely with those of Hsu J301 and

Anderson [1]. The curves reflect 90% confidence intervals on the observed data that were

obtained using the weak law of large numbers; and depict the exact bit error performance

of DS/BPSK as a baseline comparison. As mentioned previously in Chapter 7, evaluations

for 127 chips per bit are shown without bounds. Additionally, isolated samples for 1023

chips per bit are shown with the evaluations for 127 chips per bit. Only selected values of

these evaluations are available due to the extended amount of processing time required.

A value of five decibels in signal-to-noise ratio was selected as a reasonable received value

and the results are consistent with results obtained for lower values of chips per bit.
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Modulation Indices Spreading Rate Figure

Conventional

.5, .75 3 8.2

.5, .625 3 8.3

.5, .75 7 8.4

.5, .625 7 8.5

.5, .75 127 8.6

.5, .625 1.7 8.7

Modified

.5, .75 3 8.8

.5, .625 3 8.9

.5, .75 7 8.10

.5, .625 7 8.11

.5, .75 127 8.12

.5, .625 127 8.13

Table 8.4: Spread Spectrum Multi-h Evaluations
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RECEIVER PERFORMANCE

8
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01-

L] Bound
+ Evaluation

di DS/BPSK

.00 2.oo 4.00 i.o0 8.00 10.00o '2.C
BIT ENERGY-TO-NOISE RATIO (DB)

Figure 8.2: Conventional , 1 SSMH Code; N, = 3 Evaluation
2' 4
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6 RECEIVER PERFORMANCE

0i-

Pon

+ Evaluation
DS/BPSK

000 2.00 4.00 6.00) 8.00 1,6.00 172.C
BIT ENERGY-70-NOISE RATIO (DB)

Figure 8.3: Conventional I SSMIH Code; N, =3 Evaluation
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RECEIVER PERFORMANCE

0

lei+ Evaluation
-DS/BPSK

0.00 2.00 40 5.00 d.00 1 '0.00 2-.C
BIT ENERGY-TO-NOISE RATIO (DB)

Figure 8.4: Conventionai I SSMH Code; N, = 7 Evaluation2' 4
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Figure 8.5: Conventional 1, § SSMH Code; N, = 7 Evaluation
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RECEIVER PERFORMANCE
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Figure 8.6: Conventional , SSMH Code; N, = 127 Evaluation2'4 HCd;N 17Eauto
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Figure 8.7: Conventional SSMH Cd;N =17Eauto2' 8
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Figure 8.8: Modified -1, 1 SSMH Code; X, 3 Evaluation
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RECEIVER PERFORMANCE
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Figure 8.11: Modified 1, A SSMII Code; Nc = 7 Evaluation2' 8
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In order to verify the decoding depth for the Viterbi Algorithm obtained from the

difference state diagrams in Chapter 7, a modulation code was selected at random from

those being discussed in this work and the probability of bit error versus decoding depth

for a fixed signal-to-noise ratio was evaluated via the receiver evaluations. Figure 8.14

shows that in fact the minimum distance bound depth as reflected in Table 7.3 is a valid

optimal decoding delay. The difference state diagrams for the .5, .75 modified modulation

scheme indicated a minimum distance of 3 bits. The evaluations verify that performance

does begin to degrade for a decision delay less than three bits.

PROBABILITY OF ERROR
MODULATION INDICES 0.500 CHIPS 3

0.750

Uj

a-

Oi

-"

0.00 4.00 .00 112.00 4'.00 2b.00-14.0
SYMBOL DECISION LAG (BITS)

Figure 8.14: Conventional 1, 1 SSMH Error Performance Versus Decoding Delay

Up to this point, this work has defined SSMH signals, derived the transmitted spec-

trum, and investigated the receiver designed to receive and decode the information se-

quence. In the next chapter, we turn to examination of the purpose behind the signaling
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scheme; that is, the detectability by intended and unintended receivers will be investigated.
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CHAPTER 9

SSMH Signal Detectability

The previous chapters have considered the issues of signal definition and transmission

characteristics, as well as detection by an intended receiver under nearly ideal conditions.

Since the purpose of the signaling scheme was to create a signal structure with a low

probability of intercept, it is appropriate to address the issue of detectability by a unin-

tended as well as intended receiver. In order to perform this analysis, the 'best possible'

assumptions will be made for an unintended receiver leading to upper bounds on reception

capabilities. The Neyman-Pearson generalized likelihood ratio test will be used to derive

probability of detection and probability of false alarm expressions leading to delineation

of receiver operating characteristics. It is shown that even under the best possible con-

ditions, an unintended receiver could not attain sufficient detection reliability to make

positive detection possible.

9.1 Receiver Operating Characteristics

The detectability of SSMH signals in an AWGN environment is considered in this section

where the unintended receiver must make a signal/no signal detection decision based on

two hypothesis

HI: r(t) = s(t) + n(t), (9.1)

HO: r(t) = n(t). (9.2)

It should be apparent that the longer the observation interval the better the de-

tectability would be; however, so that comparisons can be made with DS/BPSK, it will
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be assumed that the observation interval is exactly a bit interval.

In addition, the following assumptions wil be made concerning the unintended re-

ceiver. In order to cbtain 'best possible' capability, it will be assumed that the receiver

knows everything about the transmitted signal except the information bits and the spread-

ing code sequence. This implies complete knowledge of

" Modulation index code and timing

" Pulse shaping function

" Bit and chip interval timing

" Carrier frequency and phase

These factors are in increasing order of likelihood that the receiver has complete knowl-

edge. Assuming that the unintended party is willing to commit unlimited resources, it

is reasonable to assume that the carrier and chip and bit timing could be obtained by

spectral analysis (See Chapter 5). On the other hand, it is extremely unlikely that the

receiver will have knowledge of the modulation parameters, but for this analysis every

benefit is given so that an upper bound is attained.

For the signals in AWGN, the generalized likelihood decision statistic becomes 49,67 i

A = ' exp{-' fL 8(r(t)- s(t))2dt}A "I- < ,7. (9.3)
exp- -LfTr2 (t)dt}

Expressing the integrals over a bit interval in terms of the summation of chip intervals,

and assuming minimum probability of error detection costs, yields

A -exp{,N-' f. 1 "r2(t - jT) - 2r(t - jT,)s(t - jT,) + s'(t - jT9).dt} >/,,-I 1foT,2t_ T)t
exp{2r 0 ', - r

2-(t - ,T)dt,

which reduces to

exp{ - [2r(t - jT,)s(t - jT,) - s j(t - jT)1dt} < 1. (9.5)
j=0 0

Converting the exponential of a sum to the product of exponentials and replacing the bit

energy term yields

2 ( 9 .6fi ep{-~. jT r~t- jT)s(t - .iT )dt) < exp{-.
.=0
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At this point, it is assumed that the receiver has complete signal knowledge except

for the information bits and the spreading sequence, such that

8 o(7 T L 7rhijjecij (t - jTO))(97

s(t - jT ) = , o(2f(t (.T7) +)

The receiver must also assume a spread spectrum signal and binary signaling such that

the distribution for the product of ac cij is as before, fc = 15ae - 1) + 16(ac+ 1). As a

result, the expected value of the likelil'ood ratio becomes
N,- 1 2 I=", f T,

o { V r *(t-jT ) )c-T2)fo(d-tT )+-))t> }

EacA = ct{ 11eNQ < e so (9.8)
j=0

After applying the expectation, expanding the trigonometric functions, and combin-

ing terms

(A = IL L + ft cj < e (9.9)2 2'
j=0

where over a given bit and chip interval

2 2E, fT, c rh t
L j = -- V J r(t) cos(2erfot) cos(-- Tldt, (9.10)

2 2 E f0T, 7.h .tL N = r(t) sin(27rfot)sin("Lf")dt,

and therefore,
N - 1 > ..

CA = 1 eLcosh(L3 ) < e N" (9.11)
j=o

After taking the logarithm, the log-likelihood ratio becomes

N, -1 >Eb
ln A Lcj + ln[cosh(Lj)j Eb (9.12)

i=0

If N, is large, which is typically the ,,se, the probability distribution of the left side

of equation 9.12 will approach a Gaussian distribution by the Central Limit Theorem.

The mean value would be
N

j=1

where

((L{, + ln cosh(L 2 )]}. (9.14)
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Similarly, the variance would be
N,

)o , (9.15)
= 1

vhere

a = E{(Lcj + lnjcosh(Lj))') }- p2  (9.16)

With this bacground, considcration can be given to determining the probability of false

a--m and probability of detectior.

Tia, probability of false alarm is the probability of selecting hypothesis one, signal

present, when iT' fact no signal is present. Thus

S 00 g (n) dn, (9.17)

where g(n) is the distribution of the dc,, n ratio when no signal is present, and 3 is the

deci-,n threshold, 3 = /A 0 . ' "enti ned a',ove, g(n) will have a Gaussian distribution

vvith st-tistics

Pg Ncpgj, (9.18)

aa 2  (9.19)

The mean values on the chip intervals are evaluated from equation 9.14 when no signal

is present. Under no signal conditions, the expected values of both Lcj and Lsj are zero,

then by definition

pgj =  {ln[cosh(Lj)]}, (9.20)

j10 In cosh(Lj)fL,,(Lj)dL,j, (9.21)

where L8, - N(O,a2.). Since E{Lj = 0, the value of aL, can be determined from the

second order statistic of L8, (no signal case) with the results

2 E, sin(27rhj){Lej)-= -(1 ,(9.2.2)
a .= E, sin(27rhj).

L. - No(1 2 .rh (9.23)

Therefore, since L8, is normally distributed, and after a change of variables, the chip

interval mean value is found from

2 00 J2
Poi = 2 lncosh(L.,y)je- 2 dy. (9.24)
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In order to find the the variance of 9(n), a similar argument is followed after defining

Z L~j + lnicosh(Lj)I. Then

C{Z2 } -- C {L j + 6 {ln2 [cosh(L.j)]}, (9.25)

where by following a procedure exactly as above

2,, = E: ( I +  2 hj) (9.26)
N.0  2 Th, (926)

Using these values gives the desired results after expansion to be

2z 2} _A2 (9.27)

a 2  
- EC sin(27rh3 ) 2 + f 00 2N-V0(I + )+ - In2 [cosh(L.,y)e- 2dy - (9.28)

2 ' (929
[ In[cosh(aL. y)]e- 2 dy]2. (9.29)

The probability of false alarm can now be obtained from equation 9.17 since g(n) is

now known to be Gaussian with mean p9 and variance a. To accomplish the sum of chip

interval values and account for the changing modulation indices, these expressions become

JA = N,: Aghi + LP9jh2, (9.30)

or2 N a2 N~. Lo 2.9 2 I- 27 + -jh, (9.3)

and

Pp f e- fi e dn. (9.32)

A similar analysis is applied to finding the probability of detection, PD, where now

the likelihood ratio is considered under hypothesis HI and there is a signal present. Thus

PD =J N(p,a)dn, (9.33)
N10

where p, is the mean value sum of u,'s, which are calculated from equation 9.10, but

now considering the presence of the transmitted signal. Similarly, a, is obtained from the

second order statistics with the signal present.

The results of these calculations for both hypothesis are summarized below for in-

formation and convenience in determining the receiver operating characteristics. Hence,
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MHo 2 -piIhi + NPilh2  (9.34)

2 NC 2 2 N

alo 2 Or'7j Ihi + j0'h2
-gj 2= lnjcosh(aL.y)]e- dy

2 E( sin(2xhl)
L No 27whj

o 2 E, + sin(2xhj)
L No 2rh )

2. E sin(27rhj) 2 2 1! yOrg (+ 2,r hj )+ ,, , , v"-rfo n jcosh(O LY)] -de
X [f ln~( o+h(nL.cY)oes dh ) d

and

NH1 Pajh, + " jh2(9.35)

2

Ui 2 sh + 2 s .
0 jh 2

EAj f,( sin(2irh,)) 2 f 0 Inicosh(aL.,Y)1e'4dy
Pj No (+ 27rh, )±- o

2. E sin(2irhj) 2 [ 2

al -(I ln+f cosh(aL,y)1e 2 dy -
To in2rh) 27 0o
22 (C+ 2 j) +  ,  n[°s(L, )

2 ln[cosh(aL.,y)e- d&12.

As indicated above, these expressions form the foundation for calculation of probabil-

ity of detection and probability of false alarm. However, as shown by Polydoros 167), the

two probabilities are interrelated and a simpler expression caa be formed to determine the

probability of detection for a given false alarm rate. Polydoros and Weber [48,67] showed

that

PD = Q [aHQ-'(PFA)-+ PHO - AHI (9.36)

This equation can now be used along with the means and variances from equation 9.34

to determine the probability of detection for any given value of false alarm. At the same

time the receiver operating characteristics, or the expression of probability of detection

versus probability of false alarm, can be shown. The following section shows the results

of this investigation.
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9.2 Detectability Results

Equations 9.36 and 9.34 were implemented numerically in FORTRAN code to determine

the probabilities of detection and false alarm for selected SSMH signaling schemes. The

probability of detection was calculated for the selected modulation coding and for various

values of false alarm rate. This netted the probability of detection curves that follow. At

the same time, the receiver operating characteristics can be shown as the plots of PD versus

PFA. Table 9.1 below lists the results for the probability of aetection and Table 9.2 lists the

results for the receiver operating characteribtics with the chip energy-to-noise ratios equal

to -20, -30, and -40 decibels. For comparison purposes the probability of detection curves

are plotted for a conilstent value of PF = .01, and for N, = 7 or 15, 127, 1023. It should

also be noted that receiver operating curves for modified SSMH reflect the operation over

two bit intervals to account for both modulation indices and N, 1000 chips per bit.

Modulation Scheme Figure

Conventional

.5, .75 9.1

.5, .625 9.2

Modified

.5, .75 9.3

.5, .625 9.4

Table 9.1: Detection Probability Curves
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Figure 9.1: Conventional Code SSMH Detectability2' 4
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PROBABILrY OF DETECT1ON
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Figure 9.2: Conventional , s Code SSMH Detectability
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8 PROBABIUTY OF DETECTION
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Figure 9.4: Modified -12 Code SSMH Detectability
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RECEIVER OPERATING CHARACTERISC
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Figure 9.5: Conventional 1, 1 Code SSM1H Receiver Operating Characteristics2' 4
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RECEIVER OPERATING CHARACTERISTICS
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Figure 9.6: Conventional 1, Code SSMH Receiver Operating Characteristics
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Figure 9.8: Modified 1, Code SSMH Receiver Operating Characteristics2' 8
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Modulation Scheme Figure

Conventional

.5, .75 9.5

.5, .625 9.6

Modified

.5, .75 9.7

.5, .625 9.8

Table 9.2: Receiver Operating Characteristic Curves
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CHAPTER 10

Results and Conclusions

Previous chapters have defined the signals which were called spread spectrum multi-h sig-

nals and characterized the signaling structure in terms of the transmitted power spectral

density, performance bounds, and signal detectability. Additionally, transmitter and re-

ceiver structures were derived to tranbmit and to optimally detect the signals in a white

noise environment. The probability of error bounds were compared with the results of

a numerically simulated receiver. With this foundation, this chapter summarizes the re-

sults from the current work by first comparing the results with existing spread spectrum

systems exemplified by direct sequence binary phase shift keying systems. Secondly, the

conclusions reached by this work are summarized, and finally, recommendations for future

work are presented. It is shown that SSMH is a viable LPI signaling waveform.

10.1 Comparisons with DS/BPSK systems

In Chapter 5, the spectra for SSMH signals were analytically derived and simulated. It

was shown that the spectra were spread replicas of the spectra of the parent multi-h

schemes. Thus significant control over the spectra is gained through the modulation index

selection in terms of the amount of spread, the relative flatness of the mainlobe, and the

sidelobe rolloff. It was also shown that there would be no distinguishing features to the

spectra, such as nulls or discrete components. Conversely, it was shown that the bpectra

for DS/BPSK signals, by necessity through the sinc 2 (x) nature of the spectrum, would

have nulls at the chip rate. It was also shown that simple square law detection would

reveal many parameters of a DS/BPSK signals (carrier frequency and chip rate), while no
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information is readily apparent on SSMH signals until the signal is raised to the power of

the denominator of the modulation indices. This comparison indicates that SSMH signals

allow much more control over the transmitted spectral shape and the spectra will be much

less susceptible to parameterization than DS/BPSK signals.

Turning to performance comparisons, the performance bounds of Chapter 7 are

evoked. As a recapitulation, the exponential bounds for SSMH signals with three chips

per bit and with seven chips per bit are shown in Figures 10.1 and 10.2 below.

-PROBABL!r> OF ER~OR B"'ND

o Conventional 1/2, 3/4
L Conventional 1/2, 5/8
x Modified 1/2, 3/4
g Modified 1/2, 5/8

J ~ ~~DSiBPSK,. /

Li

C)'
-

8\

P..

I -

2 O 4.0 6.o 8.00 110M. 1.00 14.00
BIT ENERGY-TO-NOISE RATIO (DB)

Figure 10.1: SSMlI Bit, Error Bounds with N, = 3

Additionally, Figure 10.3 below, reproduced from Spread Spectrum Communications
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o Conventional 1/2, 3/4
n, Conventional 1/2, 5/8

x Modified 1/2, 3/4
+ Modified 1/2, 5/8

C-

2z00 4.00 6 .00 8.00 10.00 2'.O 1 4.C
BIT ENERGY-TO-NOISE RATIO (DB)

Figure 10.2: SSMH Bit Error Bounds with N~7
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by Simon, Omura, Scholtz, and Levitt, shows the corresponding uncoded bit error proba-

bili.t bounds frr Direct Sequerne BPSK.

- - - Chwnoff Bound
"  Gaussian

Assumption

- I

\\ 0

1043

N \b

12 4 6 8 0 1C 2 14 16
(dB)

Figure 10.3: Uncoded DS/BPSK Error Bounds

It can be seen as an example that at an error rate of 10-5, SSMH- signals are upper

bounded at approximately eight decibels, while DS/BPSK are bounded at approximately

10-12 decibels. From this comparison, it appears that SSMH can perform more reliably

than DS/BPSK for a given signal-to-noise ratio. It should be noted though, that at very

low signal-to-noise ratios the discrepancy in performance decreases. For example, at four

decibels of signal-to-noise ratio th bit error rates are essentially the same Thus in the

range 2-4 decibels, DS/BPSK may perform better, but above four decibels SSMH would
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be a wiser choice.

With these bounds in mind, the detectability of these signals can be considered.

From Chapter 9, the detectability curves for -, conventional and modified signaling are

reproduced in Figures 10.4 and 10.5. It should be remembered that these measures of

detectability were based on an unintended receiver having almost complete knowledge of

the transmitted signal.

S. PROBABIUTY OF DETECTION
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z
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0
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-45.00 -35.00 -25.00 -'15.00 -5.00 5'.CCHIP ENERGY-TO-NOISE RATIO

Figure 10.4: Conventional 1, A Code SSMH Detectability
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Figure 10.5: Modified 1, Code SSMH Detectability2' 8
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Additionally, the detectability curves for DS/BPSK are reproduced from the Ax-

iomatix Corporation study on LPI waveforms by Polydoros and Weber [48,49) in Fig-

ure 10.6.
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Figure 10.6: DS/BPSK Detectability

Lastly, the probability of detection curves for an equivalent parameter, N, = 1000,

P4 - 10-2, conventional and modified , code SSMH system are shown in Figure 10.7.

One of the key questions of this study can now be an3wered from these curves.

Recalling that the original purpose of the design of SSMH waveforms was to create a

signaling waveform that had a low probability of intercept, the performance capabilities

can now be reconciled with the signal detectability. The performance curves (Figures 10.4

and 10.5) show that for an intended receiver operating at a received signal-4-noise ratio

of seven decibels, the probability of error performance is bounded at approximately 10'.
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After conversion of this bit energy-to-noise ratio to chip energy-to-noise ratio (-23 decibels

at 1000 chips per bit), it is clear from Figure 10.7 and Figures 10.4 and 10.5, that even

with knowledge of the signal and the high false alarm rate, the unintended receiver would

have unacceptably low probabilities of detection of less than one half. A comparison can

also be made to show that as the chip rate increases, the probability of detection decreases.

It should be noted that comparison of the detectability results for SSMH with the de-

tectability of DS/BPSK as shown in Figure 10.6, reveals that a completely known (except

for information sequence and spreading sequence) SSMH signal is less detectable than the

corresponding completely known DS/BPSK signal. This is a new and significant result

showing the potential for Lhis class of continuous phase and spread spectrum signals.

Having shown that SSMH is a viable LPI signaling technique, the following section

summarizes the results of this study and recommends further areas of research.

10.2 Results and Conclusions

The previous chapters of this study have outlined the definition and characterized the

signals that were collectively called spread spectrum multi-h signals. During the course of

this study the following results and conclusions have been reached.

* Both conventional and modified spread spectrum multi-h signals have been defined

and parameterized for the first time.

* This class of signals was shown to maintain the Markov state nature and trellis phase

state structure of multi-h signals.

o Application of the modulation index over a complete bit interval as opposed to

changing during each chip interval was considered for the first time and was found

to provide enhanced performance vis-a-vis conventional modulation techniques.

e Analytical expressions for the power density spectrum of SSMH signals have been

defined and numerically evaluated for the first time.

e The power density spectrum of a SSMH signal is the spread replica of its multi-h

parent indicating that the spectral shape is dependent on the selected modulation
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indices.

* The power density spectrum of conventional and modified SSMH signals is relatively

unaffected by the method of application of the modulation indices. This is a novel

conclusion regarding the modulation methodology.

e The transmitted spectrum of SSMH signals can be shaped to provide a wide flat

mainlobe and rapid sidelobe rolloff and transmitted at relatively low signal-to-noise

ratios to create an LPI signature.

* SSMH signal spectra do not present readily identifiable characteristics such as nulls

or discrete components.

o A coherent receiver structure can be implemented via the Viterbi Algorithm with bit

branch metrics derived from correlation filtering of noise corrupted received signals.

* Maximum likelihood bit metrics for the Viterbi Algorithm result from the sum of

correlation filter derived chip metrics.

* Minimum distance criteria were derived and shown to result from the sum of chip

distances.

* Performance bounds were derived and verified by numerical evauluation to show that

the signaling technique and receiver structure could be used to successfully detect

transmitted signals at low signal-to-noise ratios.

* For the first time, it was shown that the spreading sequence had a significant effect

on the performance of this spread spectrum system.

e At low spreading rates the modulation index code affects the performance, but at

higher rates the modulation index coding effects diminish due to the tendency of the

distances to converge. This reflects a novel interpretation of the modulation indices

and spread spectrum systems.

o Based on Figures 7.9 and 7.10, application of the modulation indices on a bit basis

rather than on a chip basis yields slightly better performance characteristics. This

is a novel and significant finding for continuous phase modulated systems.
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" The necessary decoding depth of the Viterbi Algorithm is consistent with the mini-

mum distance bounds of the coding scheme.

" Even under known signal parameter conditions, an unintended receiver would en-

counter difficulties in satisfactorily detecting the signals. This final result is crucial

to the ultimate purpose of this novel signaling technique; that is to create a signaling

technique that is immune to unintended intercept.

In summary, this work has introduced a new method of spread spectrum signaling

known as spread spectrum multi-h modulation. It has been shown this technique is a

viable alternative for low probability of intercept communications.

As a prelude to suggesting areas of future study, it is worthwhile to mention the

performance of SSMH in a stressed environment. This study has assumed complete co-

herency and synchronization, and has not considered the effects of jamming, interference,

or multipath fading. A few comments in this regard are appropriate. It must be remem-

bered that continuous phase modulated systems rely on the fact tha the information is

contained in the memory of the phase transitions. As a result, complete coherency is

not absolutely required. The implication in this statement is that noncoherent systems

may perform with little degradation compared to coherent systems. For the same reason,

the loss of individual chips or strings of chips due to fading or interference will not have

the deleterious effect that a similar loss would have on DS/BPSK systems. All of these

factors and effects are fertile areas of potential research. A few more are considered in the

following section.

10.3 Recommendations for Future Study

While these results contribute significantly to understanding this new category of signals,

many new and unanswered questions arise. As a result, the following suggestions for future

research are submitted.

o What are the effects of partial response signaling on the overall signaling structure

and performance?
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* What are the effects of M-ary signaling on the overall signaling structure and per-

formance?

* What are the effects of periodic spreading sequences on overall signal structure?

* Can other methods of spectral definition satisfactorily characterize high spreading

rate SSMH signals?

* Can other spectrum feature extraction techniques such as correlation, transform, or

edge detection be readily used to detect the signal?

* What are the effects of imperfect synchronization and timing on the coherent recep-

tion of these signals?

• What are the effects of transmitter and receiver filtering on the system performance?

* Can noncoherent reception perform as well on this signal structure as on other

continuous phase systems?

" Since the distance characteristics are spreading code dependent, can the spreading

sequence be optimized?

" What are the effects of interference and fading on the LPI performance?

" Can the modulation index code be optimized in terms of either the optimal number

of indices or the selection of specific coding schemes?

* Can coding of the modulation indices on a conventional CPFSK system enhance

performance and spectral characteristics?
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